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The analysis of distributions is central to search and matching models.
Wage distributions are a central concern but distributions of productiv-
ities, �rm types, human capital, entitlement to unemployment bene�ts
and wealth become increasingly important. We present a method - the
Fokker-Planck equations - which allows to describe and analyse the dy-
namics of distributions in a very general way. We illustrate this approach
by analysing optimal saving of risk-averse households in a frictional labour
market. Our Fokker-Planck equations describe the evolution of the joint
distribution of labour market status and wealth. A very intuitive inter-
pretation is provided.
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1 Introduction

Everybody searches. We search for jobs, for bars, for good food, occasionally even
for happiness. We sometimes �nd what we look for but it always takes time. This is

1This paper merges two earlier versions that circulated under the titles "Matching and Saving in
Continuous Time: Theory" and "Matching and Saving in Continuous Time: Proofs". None of these
papers is under submission or will be submitted.

2Large parts of this paper were written while the authors were working at the Royal Institute
of Technology (KTH) in Stockholm and the University of Glasgow, respectively. We are grateful to
these institutions for their stimulating research environment. Christian Bayer: Department of Math-
ematics, University of Vienna, Nordbergstraße 15, 1090 Wien, Austria, christian.bayer@univie.ac.at.
Klaus Wälde: University of Mainz, Mainz School of Management and Economics, Jakob-Welder-Weg
4, 55128 Mainz, Germany. klaus@waelde.com, www.waelde.com. We are very grateful to Walter
Schachermayer and Josef Teichmann for comments and guidance, Michael Graber, Leo Kaas, Philipp
Kircher, Jeremy Lise, Giuseppe Moscarini, Fabien Postel-Vinay, Sevi Rodríguez Mora, Carlos Car-
rillo Tudela and seminar participants at numerous institutions and conferences, including the SaM
2011 inaugural conference, for comments and discussions.
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of course the fundamental insight which the Diamond-Mortensen-Pissarides (DMP)
models have incorporated so successfully in labour economics and beyond.
All of the models in this tradition use stochastic processes as building blocks. The

de�ning process is the one that moves workers stochastically between employment and
unemployment. Some of the DMP-type models largely abstract from distributional
predictions resulting from these processes, some focus explicitly on distributional
properties.
A classic example for the �rst group is the seminal contribution by Pissarides

(1985) and the work inspired by it. As the assumption of a very large number of
agents allows to employ a law of large numbers, the description of the economy is
basically deterministic. Central variables of interest, e.g. the unemployment rate, can
be described by an ordinary di¤erential equation. More precisely speaking, almost all
matching models focus on the mean of the underlying stochastic process, but abstract
from positive variances which would occur with a �nite number of agents. While a
law of large numbers is easily acceptable for economy-wide (un-) employment rates,
this is less obvious for �large��rms. Most real-world �rms have so few employees
(especially when taking the heterogeneity of employees into account) that a law of
large numbers seems like a relatively strong assumption.
The seminal contribution where endogenous distributions are explicitly taken into

account is the Burdett and Mortensen (1998) paper. Individuals move up on a wage
ladder, occasionally losing their job and taking an endogenous reservation wage into
account. This stochastic process implies a distribution of wages (which is then sup-
ported by wage-posting of �rms). Subsequent work extends this analysis to allow for
structural estimation of the e¤ect of frictions on the distribution of wages (Postel-
Vinay and Robin, 2002) and for competition between �rms for workers (Cahuc et
al. 2006). Moscarini and Postel-Vinay (2008, 2010) and Coles and Mortensen (2011)
present variants of the Burdett and Mortensen model to analyse transitional dynamics
allowing, inter alia, to understand the evolution of the �rm-size distribution over the
business cycle.3 An explicit wage distribution under an uncertain match quality as in
Jovanovic (1984) allowing for Bayesian learning is presented in a Mortensen-Pissarides
(1994) type equilibrium model by Moscarini (2005).4

An additional endogenous distribution arises if some state variable is added. The
accumulation of human capital as in Burdett et al. (2011) or wealth as in Shimer and
Werning (2007, 2008) or Lise (2010) are some examples in this direction. Thinking of
entitlement to unemployment insurance payments and how it is accumulated while
employed and reduced while unemployed would be another (see Bontemps et al., 1999,
for an analysis of exogenous distributions of entitlement).
Most of these examples can be identi�ed to share a common fundamental struc-

ture: There is some fundamental stochastic process (workers moving in and out of
employment or up on a wage ladder) which implies a distribution of the variable un-

3There is another class of models where distributional aspects play a crucial role as e.g. in the
endogenous job destruction model of Mortensen and Pissarides (1994). In models of this type, the
distribution is explicitly given and not derived from more fundamental processes.

4Wage distributions can also be derived in marriage models e.g. for single females (see Jacquemet
and Robin, 2010).
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der consideration. In the case of additional state variables like wealth, human capital
or entitlement to bene�t payments, there is an additional process that also describes
the evolution of some density over time.5

It is the objective of this paper to provide a tool that embeds the analysis of
distributions into a standard mathematical tool - the so-called Fokker-Planck equa-
tions. These equations describe the distributional properties of stochastic processes
in a fairly general but still intuitive way. The advantage of these equations consists in
the fact that one is no longer restricted to speci�c distributions for which closed-form
solutions can be found. The entire dynamics of distributions is described and not
simply distributions in a �steady-state�. They can also be applied to much more
general processes than has been done so far in the literature. By their nature, all
existing distributions must be special cases of these general equations.6

As a generic example to illustrate this method, we build on the world of the
Diamond-Mortensen-Pissarides models and allow for wealth accumulation. It is stan-
dard practice in this literature to assume strong capital market imperfections imply-
ing that households consume their current income. When households are allowed to
save, however, they self-insure against labour market shocks by wealth accumulation
allowing for consumption smoothing.7

There are various reasons why this particular example of wealth accumulation in
a frictional market context is of importance. One can expect that bargaining and
labour supply choices are a¤ected by personal wealth. Analysing the e¤ects of labour
market policies is probably biased if wealth is not taken into account as wealth should
also a¤ect search intensity. Normative analyses of optimal unemployment bene�t
schemes should also take wealth issues into account as social welfare functions or
other optimality criteria neglecting wealth tend to be incomplete from a conceptional
perspective.
The big advantage of this example for illustrating the usefulness of Fokker-Planck

equations, however, consists in the generic nature of the resulting stochastic system.
There will be one fundamental equation that describes the ins into and outs out
of employment. Then, there will be one �dependent� equation that describes the

5This general description should make clear that the method to be presented here can of course
also be applied to directed search setups as in Moen (1997), Acemoglu and Shimer (1999) or Shi
(2009). Firm size distributions with aggregate shocks in a directed search setup as in Kaas and
Kircher (2011) would be another application where methods presented here promise to simplify the
description and analysis of the dynamics of distributions. As another example, take total factor
productivity to be the fundamental process and capital the corresponding state variable. The only
condition for the applicability is that the model is set in continuous time. In this sense, models
building on Sannikov (2007) or Sannikov and Skrzypacz (2008) could fruitfully use Fokker-Planck
equations as well.

6As Fokker-Planck equations describe densities, this method would allow for structural maximum
likelihood estimation of models that include additional features to those usually captured in labour
models (see e.g. van den Berg, 1990; Postel-Vinay and Robin, 2002; Flinn, 2006; see also Launov
and Wälde, 2010).

7Our example used for highlighting the usefulness of Fokker-Planck equations is therefore related
to the precautionary-savings literature (Huggett, 1993, Aiyagari, 1994 and subsequent work). For
savings in a matching framework, see also the work by Lentz and Tranaes (2005), Lentz (2009) and
Krusell et al. (2010).
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accumulation of wealth. If wealth is replaced by �rm-size, human capital, entitlement
to bene�ts or duration in employment or unemployment, exactly the same structure
occurs. We will therefore highlight later in the text how other applications can very
easily apply this method.
Before we can derive Fokker-Planck equations, we solve the consumption-saving

problem of an individual. Optimal behaviour is described by a generalized Keynes-
Ramsey rule where the generalization consists in a precautionary savings term. This
term lends itself to intuitive economic interpretation. In a second step, we provide a
phase-diagram analysis of the optimal behaviour of an individual, i.e. of the evolution
of wealth and consumption when labour income jumps between being high and low.
In addition to this illustration, we also provide a formal existence proof for optimal
consumption-wealth pro�les for both labour market states.
The third step then provides the main contribution of this paper. It inquires

into the distributional properties of wealth and labour market status. Using the
Dynkin formula, we obtain the Fokker-Planck equations for the wealth-employment
status system. We obtain a two-dimensional partial di¤erential equation system. It
describes the evolution of the density of wealth and employment status over time,
given some initial condition. When we are interested in long-run properties only, we
can set time derivatives equal to zero in the Fokker-Planck equations and obtain an
ordinary two-dimensional non-autonomous di¤erential equation system. Boundary
conditions can be motivated from our phase diagram analysis.8

This paper is related to various strands of the literature. The analysis of optimal
consumption behaviour builds on earlier work of one of the authors (Wälde, 1999,
2005) who analyzes optimal saving under Poisson uncertainty a¤ecting the return to
capital but not labour income.9 We also use the insights of the long literature using
setups with continuous time uncertainty. Starting with Merton (1969), it includes,
inter alia, the work of Turnovsky (see e.g. Turnovsky, 2000), Bentolila and Bertola
(1990), Bertola et al. (2005) and Shimer and Werning, (2007, 2008).
The principles behind and the derivation of the Fokker-Planck equation (FPE)

for Brownian motion are treated e.g. in Friedman (1975, ch. 6.5) or Øksendal (1998,
ch. 8.1). For our case of a stochastic di¤erential equation driven by a Markov chain,
we use the in�nitesimal generator as presented e.g. in Protter (1995, ex. V.7). From
general mathematical theory, we know that the density satis�es the corresponding
FPE @

@t
p(t; x) = A�p(t; x), where p denotes the density of the process with state

variable x at time t and A� is the adjoint operator of the in�nitesimal generator A of
this process. We follow this approach in our framework and obtain the FPE for the
law of the employment-wealth process.
In economics, versions of Fokker-Planck equations (also called Kolmogorov forward

equations) are rarely used or referred to so far. Papers we are aware of are Lo (1988),

8Existence and uniqueness of a stationary distribution of wealth and labour market status and
convergence to this distribution is proven in a companion paper (Bayer and Wälde, 2011).

9Work completed before the present paper includes an unpublished PhD dissertation by Sen-
newald (2006) supervised by one of the authors which contains the Keynes-Ramsey rules. Toche
(2005) considers the saving problem of an individual where job-loss is permanent and unemployment
bene�ts are zero. Lise (2006) developed a Keynes-Ramsey rule for times between jumps as well.
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Merton (1975), Klette and Kortum (2004), Moscarini (2005), Koeniger and Prat
(2007) and Prat (2007). Lo derives a FPE for a one-dimensional process. Merton
applies the method to analyse distributional properties of a stochastic Solow growth
model. Klette and Kortum employ a method related to FPEs to derive �rm-size
distributions. Moscarini uses them to derive the distribution of the belief about the
quality of a match. Koeniger and Prat obtain an employment distribution and Prat
describes the distribution of detrended productivity.
The main di¤erence in our application consists in its considerable generalization,

in the detailed derivation and in the explanations linking the derivation to standard
methods taught in advanced graduate courses. The only new tool we require and
which we introduce intuitively is the Dynkin formula. This approach focusing on the
principles of FPEs in a tractable and accessible way should allow and encourage a
much wider use of this tool for other applications. We would like to move Fokker-
Planck equations much more into the mainstream. In fact, one could argue that
Fokker-Planck equations should become a tool as common as Keynes-Ramsey rules.10

By transforming the FPEs from equations describing densities into equations de-
scribing distribution functions, we obtain a description of densities whose intuitive
interpretation is very similar to derivations of less complex distributions as in Burdett
and Mortensen (1998) or Burdett et al. (2011). In addition, however, our equations
exhibit new �advection�terms that capture the shift of the distribution due to the
evolution of the additional state variable, i.e. due to wealth.
The structure of the paper is as follows. Section 2 presents the model. Section

3 derives implications of optimal behaviour. Section 4 presents the phase diagram
analysis to understand consumption-wealth patterns over time and across labour mar-
ket states. Section 5 describes the joint distribution of the labour market status and
wealth of one individual. The corresponding FPEs for constant relative risk aversion
are derived, its properties and boundary conditions are discussed and an intuitive
interpretation is provided. It also discusses how this approach can be used for other
setups. It is also shown how constant absolute risk aversion changes the description
of densities. Section 6 shows how to obtain the aggregate distribution of wealth and
how to formulate appropriate initial distributions at the aggregate level. This allows
to link macro to micro features of the model and to obtain a general equilibrium
solution. The �nal section concludes.

2 The model

We consider a model where all aggregate variables are in a steady state. At the micro
level, individuals face idiosyncratic uninsurable risk and variables evolve in a dynamic
and stochastic way.

10We would like to thank Philipp Kircher for having put this so nicely.
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2.1 Technologies

The production of output requires capitalK and labour L. Both the capital stock and
employment are endogenous but constant. The technology is given by Y = Y (K;L)
and Y (:) has the usual neoclassical properties.
As is common for Mortensen-Pissarides type search and matching models, the

employment status z (t) of any individual jumps between the state of employment,
w, and unemployment, b, with corresponding labour income w �the net wage �and
unemployment bene�ts b. As an individual cannot lose her job when she does not
have one and as �nding a job makes (in the absence of on-the-job search) no sense
for someone who has a job, both the job arrival rate � (z (t)) and the separation
rate s (z (t)) are state dependent. As an example, when an individual is employed,
� (w) = 0, when she is unemployed, s (b) = 0:

z (t) w b

� (z (t)) 0 � > 0
s (z (t)) s > 0 0

Table 1 State dependent arrival rates

The process z (t) is a continuous-time Markov chain with state space fw; bg :
Intuitively, it can be described by the following stochastic di¤erential equation,

dz (t) = �dq� ��dqs; � � w � b: (1)

The Poisson process qs counts how often our individual moves from employment into
unemployment. The arrival rate of this process is given by s (z (t)). The Poisson
process related to job �nding is denoted by q� with an arrival rate � (z (t)). It counts
how often the individual �nds a job.
When the individual is employed, z (t) = w; the employment equation (1) simpli-

�es to dw = � (w � b) dqs: Whenever the process qs jumps, i.e. when the individual
loses her job and dqs = 1, the change in labour income is given by �w+ b and, given
that the individual earns w before losing the job, earns w � w + b = b afterwards.
Similarly, when unemployed, the employment status follows db = (w � b) dq� and
�nding a job, i.e. dq� = 1; means that labour income increases from b to w.
The presentation in (1) is most useful for all �practical purposes�, i.e. for solv-

ing the maximization problem and for the �rst step required in the derivation of
the Fokker-Planck equations. Formally, we are aware that a continuous-time Markov
chain representation of z (t) is much more stringent. In fact, our companion pa-
per (Bayer and Wälde, 2011) on the existence and stability of a unique stationary
distribution explicitly follows this more rigorous approach.11

11If one tries to answer existence issues for Fokker-Planck equations, the continuous-time Markov
chain approach is the preferred approach as well.
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2.2 Households and government

Each individual can save in an asset a (which is capital used by �rms). Her budget
constraint reads

da (t) = fra (t) + z (t)� c (t)g dt: (2)

Per unit of time dt wealth a (t) increases (or decreases) if capital income ra (t) plus
labour income z (t) is larger (or smaller) than consumption c (t) : Following (1), labour
income z (t) is given either by w or b. Dividing the budget constraint by dt and using
_a (t) � da (t) =dt would yield a more standard expression, _a (t) = ra (t) + z (t) �
c (t) : As a (t) is not di¤erentiable with respect to time at moments where individuals
jump between employment and unemployment (or vice versa), we prefer the above
representation. The latter is also more consistent with (1).
The objective function of the individual is a standard intertemporal utility func-

tion,

U (t) = Et

Z 1

t

e��[��t]u (c (�)) d�; (3)

where expectations need to be formed due to the uncertainty of labour income which
in turn makes consumption c (�) uncertain. The expectations operator is Et and
conditions on the current state in t: The planning horizon starts in t and is in�nite.
The time preference rate � is positive.
Even though most of our results should hold for general instantaneous utility

functions with positive but decreasing �rst derivatives, we will work with a CRRA
speci�cation,

u (c (�)) =

(
c(�)1���1

1��
lnc (�)

)
for

�
� 6= 1 and � > 0;
� = 1:

(4)

When illustrating properties of the wealth distributions, we will also use a CARA
speci�cation,

u (c (�)) = �e�c(�),  > 0; (5)

where  is the measure of absolute risk aversion. All formal proofs will use the CRRA
speci�cation for a positive measure of relative risk aversion � 6= 1:
There is a government who can tax the gross wage w= (1� �) using a proportional

tax �. Tax income from employed workers is used to �nance unemployment bene�ts
b: The tax adjusts such that a static government budget constraint

�
w

1� �
L = b [N � L] (6)

is ful�lled at each point in time. The path of bene�ts b is determined by some political
process which is exogenous to this model. This process makes sure that bene�ts are
smaller than the net wage, b < w.

7



2.3 Endowment

The workforce of this economy has an exogenous and invariant size N: Individuals
are initially endowed with wealth ai (t) : This can be a �xed number or random (see
sect. 5). The capital stock is de�ned as the sum over individual wealth holdings,

K � �Ni=1ai (t) : (7)

Given our steady state setup, the aggregate capital stock K is endogenous but con-
stant. Loosely speaking, there is a very large number of agents i such that all dy-
namics at the individual level wash out at the aggregate level. See our de�nition of
an equilibrium below �especially (14) �for a precise formulation.
Given the job separation and matching setup, it is well-known that in a steady

state, aggregate employment is an increasing function of the matching and a decreas-
ing function of the separation rate,

L =
�

�+ s
N: (8)

3 Optimality conditions and equilibrium

3.1 Keynes-Ramsey rules

For our understanding of optimal consumption behaviour, it is useful to derive a
Keynes-Ramsey rule. We extend the approach suggested by Wälde (1999) for the
case of an uncertain interest rate to our case of uncertain labour income. We suppress
the time argument for readability. Consumption c (aw; w) of an employed individual
with current wealth aw follows (see app. B.1)

�u
00 (c (aw; w))

u0 (c (aw; w))
dc (aw; w) =

�
r � �+ s

�
u0 (c (aw; b))

u0 (c (aw; w))
� 1
��

dt

� u00 (c (aw; w))

u0 (c (aw; w))
[c (aw; b)� c (aw; w)] dqs (9)

while her wealth evolves according to (2) with z = w, i.e.

daw = [raw + w � c (aw; w)] dt: (10)

Analogously, solving for the optimal consumption of an unemployed individual with
current wealth ab yields

�u
00 (c (ab; b))

u0 (c (ab; b))
dc (ab; b) =

�
r � �� �

�
1� u0 (c (ab; w))

u0 (c (ab; b))

��
dt

� u00 (c (ab; b))

u0 (c (ab; b))
[c (ab; w)� c (ab; b)] dq� (11)

and her wealth follows
dab = [rab + b� c (ab; b)]dt: (12)
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Without uncertainty about future labor income, i.e. s = � = dqs = dq� = 0, the
above Keynes-Ramsey rules reduce to the classical deterministic consumption rule,
�u00(c)
u0(c) _c = r � �. The additional s [:] term in (9) shows that consumption growth is

faster under the risk of a job loss. Note that the expression [u0 (c (aw; b)) =u0 (c (aw; w))� 1]
is positive as consumption c (aw; b) of an unemployed worker is smaller than consump-
tion of an employed worker c (aw; w) (see lem. 8 for a proof) and marginal utility is
decreasing, u00 < 0: Similarly, the � [:] term in (11) shows that consumption growth
for unemployed workers is smaller.
As the additional term in (9) contains the ratio of marginal utility from con-

sumption when unemployed relative to marginal utility when employed, this suggests
that it stands for precautionary savings (Leland, 1968, Aiyagari, 1994, Huggett and
Ospina, 2001). When marginal utility from consumption under unemployment is
much higher than marginal utility from employment, individuals experience a high
drop in consumption when becoming unemployed. If relative consumption shrinks as
wealth rises, i.e. if d

da
c(a;w)
c(a;b)

< 0; reducing this gap and smoothing consumption is best
achieved by fast capital accumulation. This fast capital accumulation would go hand
in hand with fast consumption growth as visible in (9).
In the case of unemployment, the � [:] term in (11) suggests that the possibility to

�nd a new job induces unemployed individuals to increase their current consumption
level. Relative to a situation in which unemployment is an absorbing state (once
unemployed, always unemployed, i.e. � = 0), the prospect of a higher labor income
in the future reduces the willingness to give up today�s consumption. With higher
consumption levels, wealth accumulation is lower and consumption growth is reduced.
The stochastic dq-terms in (9) and (11) (tautologically) represent the discrete

jumps in the level of consumption whenever the employment status changes. We will
understand more about these jumps after the phase-diagram analysis below.

3.2 Factor rewards

There is random matching with arrival rate � of workers to markets characterized
by an in�nite supply of jobs. Once a market is found, there is perfect competition
and agents are price takers as in Lucas and Prescott (1974) or Moen (1997). Firms
rent capital on a spot market and choose an amount such that marginal productivity
equals the rental rate. At the aggregate level, this �xes capital returns r and the
gross wage w= (1� �) at

r =
@Y (K;L)

@K
;

w

1� �
=
@Y (K;L)

@L
: (13)

3.3 Equilibrium

Consider one individual with an initial level of wealth of a (t) and an employment
status z (t) : This individual faces an uncertain future labour income stream z (�) :
One can ask what the distribution of wealth of this individual for some long-run
stationary state is. Denote the corresponding density by p (a). Employing a law
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of large numbers (see below for detailed de�nitions and analysis), we can use this
de�nition to de�ne general equilibrium. There is a deterministic macro level where
all variables are constant. All uncertainty and all dynamics take place at the micro
level. The average capital stock (for N approaching in�nity) is given by the mean of
the wealth distribution, given a density p (a) of wealth,

K

N
=

Z
ap (a) da: (14)

This provides the link between the micro and macro level. We can now formulate

De�nition 1 A competitive stationary equilibrium is described by a constant aggre-
gate capital stock K and employment level L, factor rewards w; r and the tax rate �;
two functions c (a; w) and c (a; b) and a wealth density p (a) such that

1. K satis�es (14) and L is given by (8),

2. given exogenous bene�ts b; the government budget constraint (6) and the �rst-
order condition for labour in (13) jointly �x the tax rate � and wage rate w; the
interest rate r satis�es the �rst-order condition for capital in (13),

3. the consumption functions c (a; z) satisfy the reduced form (21) plus two bound-
ary conditions of def. 2,

4. the density p (a) is the stationary distribution described by Fokker-Planck equa-
tions joint with initial conditions in sect. 5 and 6.

In addition to this macro equilibrium, the dynamics of each individual�s wealth
distribution p (a; z; �) is described by the solution to the same Fokker-Planck equa-
tions given initial conditions in sect. 5.

4 Consumption and wealth dynamics

Given our aggregate steady state, this section will now characterize optimal consump-
tion and wealth dynamics of individuals in our economy.

4.1 Consumption growth and the interest rate

We �rst focus on individuals in periods between jumps. The evolution of consumption
is then given by the deterministic part, i.e. the dt-part, in (9) and (11). We then easily
understand

Lemma 1 Individual consumption rises if and only if current consumption relative
to consumption in the other state is su¢ ciently high.
For the employed worker, consumption rises if and only if c (aw; w) relative to

c (aw; b) is su¢ ciently high,

dc (aw; w)

dt
� 0, u0 (c (aw; b))

u0 (c (aw; w))
� 1� r � �

s
, c (aw; w)

c (aw; b)
� 1= ; (15)
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where

 �
�
1� r � �

s

��1=�
: (16)

For the unemployed worker, consumption rises if and only if c (ab; b) relative to
c (ab; w) is su¢ ciently high,

dc (ab; b)

dt
� 0, u0 (c (ab; w))

u0 (c (ab; b))
� 1� r � �

�
, c (ab; b)

c (ab; w)
�
�
1� r � �

�

�1=�
: (17)

Proof. Rearranging (9) and (11) for dqs = dq� = 0 and taking (4) into account
gives the results (see app. B.2). Note that in what follows  will be used only for r
su¢ ciently small making sure that  is a real number.
We can now establish our �rst main �ndings. As the conditions in lem. 1 show,

consumption and wealth dynamics crucially depend on how high the interest rate is.
We therefore subdivide our discussion into three parts with r lying in the three ranges
given by (0; �]; (�; �+ �) ; [� + �;1): For the proofs of propositions 1 to 3, we rely
on one very weak

Assumption 1 Relative consumption c (a; w) =c (a; b) is continuously di¤erentiable
in wealth a: The number of sign changes of its �rst derivative with respect to wealth
in any interval of �nite length is �nite.12

Starting with the third range [�+ �;1), we obtain

Proposition 1 For a high interest rate, i.e. if r � � + �, consumption of employed
and unemployed workers always increases.

Proof. Consumption of the employed worker increases as can be directly seen
from the �rst expression in (15). As long as r > � and c (a; w) > c (a; b) ; the latter
is proven in lem. 8, condition (15) is ful�lled: The right-hand side (RHS) is smaller
than one and the left-hand side is larger than one as long as u00 < 0 which holds for
(4). The case of the unemployed worker can also most easily be seen from the �rst
expression in (17). For r = �+�+" with " � 0; the RHS is given by 1� r��

�
= � "

�
� 0:

As u
0(c(ab;w))
u0(c(ab;b))

� 0; (17) holds for r � �+ �.
The high interest rate case reminds of the standard optimal saving result in de-

terministic setups. If the interest rate is only high enough, consumption and wealth
increase over time. This is true here as well. The only di¤erence consists in the fact
that the interest rate must be higher than the time preference rate plus the job arrival
rate.
While we leave a quantitative analysis to ongoing numerical work, it is interesting

already at this stage to note that the di¤erence for the interest rate as compared to

12The second sentence of this assumption is required to rule out �pathological cases�. One can
construct continuously di¤erentiable functions that change sign in�nitly often in a �nite neighbor-
hood (think of x sin (1=x) in a neighborhood of zero). None of these functions would be economically
plausible in any way. We employ this assumption neither for our other proofs in this nor for the
proofs in the companion paper.
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deterministic models is quite substantial. In deterministic models, the interest rate
must be larger than the time preference rate. As the job arrival rate is around four
times higher than the time preference rate, the interest rate must be much higher
here to guarantee wealth growth in all employment states.
As in other setups with growing consumption, we need to make sure that con-

sumption does not grow too fast. If it does, utility grows too fast and the expected
value of the integral in the objective function (3) is not �nite. Optimization would
then be more involved, which we would like to avoid. We therefore have to impose a
boundedness condition which implies an upper limit on the interest rate. This con-
dition can easily be derived for the limiting case where a is very large, i.e. where the
di¤erence between w and b can be neglected. The boundedness condition then reads
(1� �) r < �:13

The second result is summarized in

Proposition 2 If the interest rate is at an intermediate level, i.e. � < r < �+ �,
(i) consumption of employed workers always increases.
(ii) consumption of an unemployed worker increases only if she is su¢ ciently

wealthy, i.e. if her wealth a exceeds the threshold level a�b ; where the threshold level is
implicitly given by

u0 (c (a�b ; w))

u0 (c (a�b ; b))
� 1� r � �

�
: (18)

Consumption decreases for a < a�b :
(iii) At the threshold level a�b ; consumption of employed workers exceeds consump-

tion of unemployed workers.

Proof. The proof is in complete analogy to the proof of the following prop. 3 for
the low interest rate. As prop. 3 is more important for our purposes, we will prove
prop. 3 but not this one.
This proposition points to the central new insight for optimal consumption. For

the employed worker, the result from deterministic worlds survives: If the interest
rate is higher than the time preference rate, consumption and wealth rise. For the
unemployed worker, however, this is not true. Consumption and wealth rise only if
the unemployed worker is su¢ ciently rich. In a way, this is a �dramatic�result. If
a worker loses a job, consumption continues to rise only if the worker is su¢ ciently
rich at the moment of the job loss. If, by contrast, a worker losing a job is below the
threshold level a�b ; consumption and wealth is reduced.
Finally, we have

Proposition 3 Consider a low interest rate, i.e. 0 < r � �. De�ne a threshold level
a�w by

u0 (c (a�w; b))

u0 (c (a�w; w))
� 1� r � �

s
: (19)

13An interest rate r can satisfy both this boundedness condition and the condition r � �+ � for
the high-interest-rate case if � < �

1���. This condition on � needs to be taken into account in any
quantitative analysis.
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For our instantaneous utility function (4), this de�nition reads

c (a�w; b) =  c (a�w; w) (20)

where  is from (16).
(i) Consumption of employed workers increases if the worker owns a su¢ ciently

low wealth level, a < a�w. Employed workers with a > a�w choose falling consumption
paths.
(ii) Consumption of unemployed workers always decreases.
(iii) Consumption of employed workers exceeds consumption of unemployed work-

ers at the threshold a�w; i.e.  � 1 in (20) for r � �:

Proof. see app. A.1
We are now in a position to intuitively understand all three propositions. In deter-

ministic setups, an interest rate exceeding the time preference rate is enough to imply
positive consumption growth. In a world with precautionary saving, only employed
workers will experience rising consumption for sure when r > �: Unemployed workers
experience rising consumption only for a high interest rate r > �+ � or for r close to
but larger than � only if they are su¢ ciently rich. The reason for these results is the
�optimism�of unemployed workers that they will �nd a job in the future. Anticipat-
ing higher future income, they choose a higher consumption level than in a situation
where the state of unemployment is permanent. Due to this higher consumption level,
consumption and wealth growth is reduced. Only if the interest rate exceeds �+� or
if an unemployed worker is su¢ ciently rich, this higher consumption does still allow
for consumption growth.
Similarly for employed workers: In deterministic worlds, an interest rate below

the time preference rate implies falling consumption and wealth levels. Here, as there
is precautionary saving of the employed worker, a situation of r < � still implies
growing consumption and wealth.
These propositions also clearly show that if we are interested in a general equi-

librium result with stationary properties, the interest rate cannot be larger than the
time preference rate. If the interest rate exceeded the time preference rate, consump-
tion would grow without bound � at least for some employment states and levels
of wealth. Only for r � � there are consumption dynamics which indicate that a
stationary distribution of consumption can exist.

4.2 The reduced form

Before we can derive further properties of optimal behaviour, we need a �reduced
form�for optimal behaviour of individuals. A reduced form is a system of equations
with as few equations as possible which determines an identical number of endogenous
variables and which allow us to derive all other endogenous variables subsequently.
When searching for such a reduced form, we can exploit the fact that Poisson uncer-
tainty allows to divide the analysis of a system into what happens between jumps and
what happens at jumps. Between jumps, the system evolves in a deterministic way �
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but does of course take the possibility of a jump into account as is clearly visible in
the precautionary savings terms in the Keynes-Ramsey rules (9) and (11).14

We obtain such a reduced form by focusing on the evolution between jumps and
by eliminating time as exogenous variable. Computing the derivatives of consump-
tion with respect to wealth in both states and considering wealth as the exogenous
variable, we obtain a two-dimensional system of non-autonomous ordinary di¤erential
equations (ODE). As wealth is now the argument for these two di¤erential equations,
there is no longer a need to distinguish between wealth of employed and unemployed
workers (i.e. between aw and ab). We simply ask how wealth changes in one or the
other state given a certain wealth level a: Between jumps, the reduced form therefore
reads

�u
00 (c (a; w))

u0 (c (a; w))

dc (a; w)

da
=
r � �+ s

h
u0(c(a;b))
u0(c(a;w)) � 1

i
ra+ w � c (a; w)

; (21a)

�u
00 (c (a; b))

u0 (c (a; b))

dc (a; b)

da
=
r � �� �

h
1� u0(c(a;w))

u0(c(a;b))

i
ra+ b� c (a; b)

: (21b)

With two boundary conditions, this system provides a unique solution for c (a; w)
and c (a; b). Once solved, the e¤ect of a jump is then simply the e¤ect of a jump of
consumption from, say, c (a; w) to c (a; b) :

4.3 Phase diagram and policy functions

Given the �ndings on consumption in the above propositions and our reduced form
in (21), we can now describe the link between optimal consumption and wealth of
unemployed and employed workers. We will focus on the case of an interest rate below
the time preference rate as this is implies a stationary general equilibrium solution.
We leave general equilibrium analyses of the other cases for future work.

� Natural borrowing limit

The subsequent analysis will be facilitated by noting that there is an endogenous
�natural�borrowing limit. The idea is similar to Aiyagari�s (1994) borrowing limit
resulting from non-negative consumption. This limit is derived in the following

Proposition 4 Any individual with initial wealth a � �b=r will never be able to or
willing to borrow more than �b=r: Consumption of an unemployed worker at a = �b=r
is zero, c (�b=r; b) = 0:
14One could be tempted to think of the deterministic parts of the two Keynes-Ramsey rules (9)

and (11), jointly with the budget constraints (10) and (12) to provide such a reduced form. With
an initial condition for wealth and the consumption levels in the di¤erent states, one could think
of the evolution between jumps as being described by four ordinary di¤erential equations. When
solving these equations (conceptionally or numerically), the solution in t for consumption of, say,
the unemployed, c (ab; b) from (11) would not correspond to consumption c (aw; b) as required in
the precautionary savings part in (9) for the employed as wealth levels are accumulated at di¤erent
speed, i.e. ab (t) generally di¤ers from aw (t) : Equations (9) to (12) do therefore not constitute a
system of ODEs and cannot be used as a reduced form.
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Proof. �willing to�: An employed individual with a � �b=r will increase wealth
for any wealth levels below a�w from (19). If a�w is larger than �b=r �which we can
safely assume �employed workers with wealth below a�w increase wealth and are not
willing to borrow more than �b=r.
�able to�: Imagine an unemployed worker had wealth lower than �b=r: Even if

consumption is equal to zero, wealth would further fall, given that _a = ra+ b < 0,
a < �b=r: If an individual could commit to zero consumption when employed and
if the separation rate was zero, the maximum debt an individual could pay back is
�w=r: Imagine an unemployed worker succeeded in convincing someone to lend her
�money� even though current wealth is below �b=r: Then, with a strictly positive
probability, wealth will fall below �w=r within a �nite period of time. Hence, anyone
lending to an unemployed worker with wealth below �b=r knows that not all of this
loan will be paid back with positive probability. This cannot be the case in our setup
with one riskless asset. Hence, the maximum debt level is b=r and consumption is
zero at a = �b=r for an unemployed worker.

� Laws of motion and policy functions

The following �g. 1 plots wealth on the horizontal and consumption c (a; z) on
the vertical axis. It plots dashed zero-motion lines for aw and c (a; w) and a solid
zero-motion line for ab following from (10), (19) and (12), respectively. We assume
for this �gure that the threshold level a�w is positive.

15 The intersection point of the
zero-motion lines for c (a; w) and aw is the temporary steady state (TSS),

� � (a�w; c (a�w; w)) : (22)

Figure 1 Policy functions for employed and unemployed workers (low interest rate)

15This is of course a quantitative issue. In ongoing numerical work, the threshold is positive for
reasonable parameter values. It approaches in�nity for r approaching �.
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We call this point temporary steady state for two reasons. On the one hand,
employed workers experience no change in wealth, consumption or any other variable
when at this point (as in a standard steady state of a deterministic system). On the
other hand, the expected spell in employment is �nite and a random transition into
unemployment will eventually occur. Hence, the state in � is steady only temporarily.
As we know from prop. 3 that consumption for the unemployed always falls, both

consumption and wealth fall above the zero-motion line for ab. The arrow-pairs for
the employed workers are also added. They show that one can draw a saddle-path
through the TSS. To the left of the TSS, wealth and consumption of employed workers
rise, to the right, they fall.
Relative consumption when the employed worker is in the TSS is given by (20). A

trajectory going through (a�w; c (a
�
w; b)) and hitting the zero-motion line of ab at �b=r

is in accordance with laws of motions for the unemployed worker.

� Properties of optimal behaviour

The case of a low interest rate is particularly useful as the range of wealth a worker
can hold is bounded. Whatever the initial wealth level, there is a positive probability
that the wealth level will be in the range [�b=r; a�w] after some �nite length of time.
For an illustration, consider the policy functions in �g. 1: Wealth decreases both
for employed and unemployed workers for a > a�w: The transition into the range
[�b=r; a�w] will take place only in the state of unemployment which, however, occurs
with positive probability.
When wealth of an individual is within the range [�b=r; a�w] ; consumption and

wealth will rise while employed and fall while unemployed. While employed, precau-
tionary saving motives drive the worker to accumulate wealth. While unemployed,
the worker runs down current wealth as higher income for the future is anticipated �
�postcautionary dissaving�takes place. When a worker loses a job at a wealth level
of, say, a�w=2; his consumption level will drop from c (a�w=2; w) to c (a

�
w=2; b) : Con-

versely, if an unemployed worker �nds a job at, say, a = 0; her consumption increases
from c (0; b) to c (0; w) : A worker will therefore be in a permanent consumption and
wealth cycle. Given these dynamics, one can easily imagine a distribution of wealth
over the range [�b=r; a�w].

4.4 Existence of an optimal consumption path

All steps undertaken so far were explorative. We now turn to a proof for the existence
of a path c (a; z) as depicted in �g. 1.
In �g. 1, we implicitly considered solutions of our system in the setQ = fa � �b=rg\

fc (a; w) � ra+ wg\fc (a; b) � ra+ bg\fc (a; b) � 0g\fc (a; w) � c (a; b)g. In words,
wealth is at least as large as the maximum debt level b=r; consumption of the employed
worker is below the zero-motion line for her wealth, consumption of the unemployed
worker is above her zero-motion line for wealth, consumption of the unemployed
worker is non-negative and consumption of employed workers always exceeds con-
sumption of unemployed workers (see lem. 8).
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For the proofs we restrict this set in two ways. First, we consider the domain

Qv = f(a; c (a; w) ; c (a; b)) 2 R3j (a; c (a; w) ; c (a; b)) 2 Q; c (a; w) � ra+w�vg; (23)

where v is the small positive constant, as an approximation to our �full�set Q. As
Q0 = Q; Qv simply excludes the zero-motion line for wealth of the employed workers.
We need to do this as the fraction on the right-hand side of our di¤erential equation
(21a) is not de�ned for the TSS.16 As v is small, however, we can get arbitrarily close
to this zero-motion line and Qv approximates Q arbitrarily well.
Second, we consider

Rv;	 =
�
(a; c (a; w) ; c (a; b)) 2 R3j (a; c (a; w) ; c (a; b)) 2 Qv; (24)

c (a; w) � 	 <1; a � (c(a; w)� w + v)=rg ;

where 	 is a �nite large constant.17 This additional restriction makes the set Rv;	
bounded. This is a purely technical necessity.
We now introduce an auxiliary TSS (aTSS) in order to capture v: In analogy to

the TSS � from (22), this point is de�ned by

�v � (a�w; cv (a�w; w)) ;

i.e. the wealth level a�w is unchanged but the consumption level is �a bit lower�than in
the TSS. In the TSS, the consumption level is on the zero-motion line, i.e. c (a�w; w) =
ra�w + w: In the aTSS, the consumption level is on the line ra+ w � v and therefore
given by cv (a�w; w) = ra�w + w � v: Let us now consider the following

De�nition 2 (Optimal consumption path) A consumption path is a solution (a; c (a; w) ; c (a; b))
of the ODE-system (21) for the range �b=r � a � a�w in Rv;	 with terminal condition
(a�w; cv (a

�
w; w) ; cv (a

�
w; b)). In analogy to the aTSS and to (20), the terminal condi-

tion satis�es cv (a�w; w) = ra�w + w � v and cv (a�w; b) =  cv (a
�
w; w) for an arbitrary

a�w > �b=r: An optimal consumption path is a consumption path which in addition
satis�es c (�b=r; b) = 0:

App. A.2 then proves

Theorem 1 There is an optimal consumption path.

This establishes that we can continue in our analysis by taking the existence of
a path c (a; z) as given. Intuitively speaking, i.e. looking at v as very small con-
stant close to zero, we know that there are paths c (a; w) and c (a; b) as drawn in
�g. 1. The approximation implied by the auxiliary TSS is very small compared to
any measurement error in the data. Values of v = 10�3 worked perfectly in numerical
solutions.
16While this is a standard property of many steady states, the standard solutions (e.g. linearization

around the steady state) do not work in our case. This is in part due to the fact that the original
stochastic di¤erential equation system (9) to (12) - even when stripped of its stochastic part - is not
an ordinary di¤erential equation system.
17The constant 	 only serves to make Rv;	 � R3 a compact set, which we need to obtain global,

uniform Lipschitz constants. We shall see below that 	 has to be chosen larger than 	0 =
 w�b
(1� )r .

In this case, however, 	 does not interfere with the construction.
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5 The distribution of labour income and wealth

We now come to the main contribution of this paper where we describe distributional
properties of z (t) and a (t) : This is of importance per se from a micro perspective
�but it will also allow us to close the model and obtain general equilibrium results.
As argued in the introduction, the basic structure we will get to know is a structure
that serves as an example that can be adapted for many other applications.

5.1 Labour market probabilities

Consider �rst the distribution of the labour market state. Given that the transition
rates between w and b are constant, the conditional probabilities of being in state z (�)
follow e.g. from solving Kolmogorov�s backward equations as presented e.g. in Ross
(1993, ch. 6). As an example, the probability of being employed in � � t conditional
on being in state z 2 fw; bg in t are

P (z (�) = wjz (t) = w) � pww (�) =
�

�+ s
+

s

�+ s
e�(�+s)(��t); (25)

P (z (�) = wjz (t) = b) � pbw (�) =
�

�+ s
� �

�+ s
e�(�+s)(��t): (26)

The complementary probabilities are pwb (�) = 1� pww (�) and pbb (�) = 1� pbw (�) :
Letting pw (t) denote the probability of z (t) = w; i.e. letting it describe the initial
distribution of z (t) ; the unconditional probability of being in state z in � is

pz (�) = pw (t) pwz (�) + (1� pw (t)) pbz (�) : (27)

Equations (25) and (26) nicely show the in�uence of the initial condition on the
probability of having a job. Consider a point in time � which is just an instant after t:
Let this instant be so small that � is basically identical to t: Then, the probability of
being employed in � (where � = t) is given by �

�+s
+ s
�+s

= 1: Similarly, the probability
of being unemployed in � where � is very close to t is given by (set � = t in (26))
�
�+s

� �
�+s

= 0: The longer the point � lies into the future, the less important the
initial state becomes and the closer both probabilities approach the unconditional
probability of being employed, which is �

�+s
:

5.2 Fokker-Planck equations for wealth

5.2.1 The question and how to answer it

Now consider one individual with a level of wealth of a (t) and an employment status
z (t) : This individual faces an uncertain future labour income stream z (�) : Our
fundamental question is: what is the joint distribution of a (�) and z (�) for � � t?
In order to answer this question, or to answer any question of this type, we need

a description of the stochastic processes of a (�) and z (�) : The process for z (�) is
given in (1). The process for a (�) is given by the budget constraint (2), where,
however, consumption needs to be replaced by optimal consumption c (a; z) : Then,

18



after de�ning the (joint) density of (a (�) ; z (�)) ; i.e. of the labour market status and
wealth for � � t, we can apply the �Fokker-Planck machinery�to obtain a description
of the densities.
We denote the joint density by p (a; z; �) : For each point in time �; there is obvi-

ously a discrete and a continuous random variable. We can therefore split the density
into two �subdensities�p (a; w; �) and p (a; b; �) ; both drawn in �g. 2 for some � � t.
The subdensities can be understood as the product of a conditional density p (a; � jz)
times the probability of being in employment state z,

p (a; z; �) � p (a; � jz) pz (�) : (28)

The probability pz (�) of an individual to be in a state z in � is given by (27). As is
clear from (28), p (a; z; �) are not conditional densities �they rather integrate to the
probability of z (�) = z: Looking at an individual who is in state z in � , we getZ

p (a; z; �) da =

Z
p (a; � jz) pz (�) da = pz (�)

Z
p (a; � jz) da = pz (�) : (29)

The density of a at some point in time � is then simply

p (a; �) = p (a; w; �) + p (a; b; �) : (30)

a

z
p(.)

b

w

b or w p(a,w,  )

p(a,b,  )

p(a,  )τ

τ

τ

Figure 2 The subdensities p (a; b; �) and p (a; w; �) and the density p (a; �)

Note that the distribution of (a (�) ; z (�)) certainly depends on the initial con-
dition (a (t) ; z (t)), which needs to be speci�ed in order to calculate p (a; z; �). In
the notation we do not distinguish between the following two possibilities. Firstly,
(a (t) ; z (t)) can be deterministic numbers, in which case p (a; z; t) is a Dirac-distribution
centered in (a (t) ; z (t)) (more precisely, the mapping a ! p (z; a; t) is a Dirac-
distribution). Secondly, (a (t) ; z (t)) can itself be random, either because we regard
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them as outcomes of the employment-wealth-process started at an even earlier time, or
because there is some intrinsic uncertainty in measuring a (t) (see below in sect. 5.2.3).
Let us now step back and ask how this approach can be applied to other se-

tups. If one would like to understand the process of accumulation and depreciation of
skills and experience during di¤erent employment states, one would have to specify
a di¤erential equation for skill similar to the budget constraint (2). Joint with the
fundamental process (1) one could then derive Fokker-Planck equations for densities.
If one would like to model the endogenous distribution of entitlement to unemploy-
ment bene�ts, one would have to �translate�regulations concerning entitlement into
a di¤erential equation, add again (1) and proceed to derive Fokker-Planck equations.
Similar procedures are possible for analysing distributions over the business cycle
where some aggregate shock process would be added to (2), (1) or both. Note that
this approach works for processes driven e.g. by Brownian motion just as well.

5.2.2 The equations and their economic interpretation

The derivation of the Fokker-Planck equations is in app. A.3. The result is a system
of two non-autonomous quasi-linear partial di¤erential equations in p (a; w; �) and
p (a; b; �),

@

@�
p (a; w; �) + fra+ w � c (a; w)g @

@a
p (a; w; �) =

�
�
r � @

@a
c (a; w) + s

�
p (a; w; �) + �p (a; b; �) ; (31a)

@

@�
p (a; b; �) + fra+ b� c (a; b)g @

@a
p (a; b; �) =

sp (a; w; �)�
�
r � @

@a
c (a; b) + �

�
p (a; b; �) : (31b)

The system is a partial di¤erential equation system as there are two derivatives, one
with respect to time � and one with respect to wealth a �which is not surprising: As
the FPEs describe the evolution of the density for wealth over time, two derivatives
are needed. The derivative with respect to a describes the �cross-sectional�property
of the density for a given �: The time derivative describes how a density changes over
time.18 The di¤erential equations are called quasi-linear as the factors in front of the
wealth-derivatives are functions of a: When we analyse the distribution of wealth for
CARA utility (5), we obtain a linear PDE system (see sect. 5.2.6). The PDEs are
non-autonomous as some of the terms (other than the densities) also depend explicitly
on one of the exogenous variables (exogenous in a di¤erential equation sense), i.e. on
wealth a:
As we can see, the density depends on properties of optimizing behaviour through

the consumption levels c (a; w) and c (a; b) and through the marginal propensities to

18Compare this to the Pearson system of distributions that describes densities by ordinary non-
autonomous di¤erential equations (see e.g. Johnson, Kotz and Balakrishnan, 1994, ch. 12). These
ordinary di¤erential equations describe the densisty of one random variable. Here, we analyse a
stochastic process, i.e. a sequence of random variables, and therefore need two derivatives.
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consume out of wealth, @c (a; w) =@a. These FPEs therefore describe the evolution
of wealth for any speci�cation of the utility function (e.g. CRRA, CARA, log, etc.).
Modifying the utility function (e.g. allowing for labour supply or separating the
intertemporal elasticity of substitution from risk aversion) a¤ects the density of wealth
through the e¤ect on the optimal consumption plan c (a; z) :
Before we given an economic interpretation to these equations, we transform them

such that they do not describe densities but distribution functions. To this end, de�ne
subdistribution functions as

P (a; z; �) �
Z a

�b=r
p (a; z; �) da: (32)

The term P (a; w; �) gives the probability that an individual will be employed in �
and own wealth equal or lower to a: Given our de�nition of subdensities and their
property in (29), we know that lima!1P (a; w; �) = pzw (�) where the term pzw (�) is
given in either (25) or (26), depending on the initial state in t:
The transformation of our FPEs is subject to the condition that p

�
� b
r
; z; �

�
= 0

for all �: This means that there is no worker with wealth equal to �b=r: As a wealth
of �b=r for unemployed workers would imply zero consumption, c (�b=r; b) = 0,
this can be ruled out indeed as marginal utility from consumption would then be
in�nity. This would violate optimality. As employed workers with wealth of �b=r
can only originate from unemployed workers with this wealth level (as wealth of
employed workers increases, see �g. 1) and as p

�
� b
r
; b; �

�
= 0 for all �; we know that

p
�
� b
r
; w; �

�
= 0 for all � as well.

The subdistribution functions in (32) obey the following system (cf. app. B.4)

@

@�
P (a; w; �) = �fra+ w � c (a; w)g @

@a
P (a; w; �)� sP (a; w; �) + �P (a; b; �) ;

(33a)
@

@�
P (a; b; �) = �fra+ b� c (a; b)g @

@a
P (a; b; �) + sP (a; w; �)� �P (a; b; �) :

(33b)

This system is now extremely easy to understand: Starting with the �rst equa-
tion, the evolution of the distribution function over time, i.e. the time derivative
@P (a; w; �) =@� on the left hand sides depends on three terms. Starting at the end,
there is an increase in the probability P (a; w; �) if there is a high �ow from the state
of being unemployed. This �ow can be high if the matching rate �, the probability
of being unemployed P (a; b; �) or if a combination of the two is high. Similarly, the
probability P (a; w; �) decreases (ceteris paribus) exponentially at the rate s; and the
faster so, the higher the separation rate. The interpretation of the last two terms in
the second equation (33b) is identical (subject to reversed signs). These two terms are
very familiar from derivations of wage distributions in the Burdett-Mortensen (1998)
tradition.
The �rst term is what is called an advection term in physics and related disciplines

where the �ow of particles in a �uid is being modelled. Particles move stochastically
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within the �uid and are subject to advection, i.e. to movements due to the movement
of the �uid itself (�bulk motion�). In this economic application, wealth of workers is
�owing in an economy. The wealth levels of workers are stochastically moving back
and forth between di¤erent states w and b: These are the two terms at the end of
(33a,b). Wealth is also moved non-stochastically within the states, either upwards
(when employed) or downwards (when unemployed). The direction of the movement
is on the wealth line, i.e. the partial derivative @P (a; w; �) =@a is denotes the direction
of a:19 The speed of this movement is determined by savings ra + z � c (a; z) : The
speed is positive when employed and negative when unemployed. The overall e¤ect of
positive savings for the probability P (a; w; �) of employed workers is then to decrease
this probability. As wealth increases, the probability of having a wealth level equal
to or lower than a certain level a obviously falls as there is a permanent �ow towards
higher wealth levels. This �ow is then reversed in the state of unemployment where
the speed (i.e. savings ra� b� c (a; b)) is negative. As a consequence, the probability
P (a; b; �) ceteris paribus increases over time as unemployed workers �gather�towards
the lower end of the wealth distribution.

5.2.3 Initial conditions

Obtaining a unique solution for ODEs generally requires certain di¤erentiability con-
ditions and as many initial conditions as di¤erential equations. Conditions for obtain-
ing a unique solution for PDEs di¤er in various respects, of which the most important
one from an intuitive perspective is the fact that instead of initial conditions (i.e. an
initial value or vector), initial functions are required. This can easily be understood
for our case: Let us assume two initial functions for a; one for each labour market state
z 2 fw; bg. The obvious interpretation for these initial functions are densities, just as
illustrated in �g. 2. Initial functions would therefore be given by p (a; b; t) = pini (a; b)
and p (a; w; t) = pini (a; w) : Clearly, they take positive values on the range [�b=r; a�w]
only and need to jointly integrate to unity. Given these initial functions, one can then
compute the partial derivatives with respect to a in (31). This gives an ODE system
which allows us to compute the density for the �next��: Repeating this gives us the
densities for all z; a and � we are interested in.
An initial function for wealth in each labour market state sounds unusual when

thinking of one individual who, say, in t has wealth of a (t) and is currently employed,
z (t) = w: One can express these two deterministic numbers such that we obtain
initial functions, however. First, pini (a; b) = 0: as the probability for an employed
individual to be unemployed is zero and the probability of being unemployed is given
by
R a�w
�b=r p

ini (a; b) da (compare the example in (29)), pini (a; b) must be zero. Second,
there are two possibilities for pini (a; w) : Either one considers pini (a; w) as a Dirac-
distribution, i.e. there is a degenerate density with mass-point at a = a (t) : Or,
maybe most convenient both for numerical purposes and for intuition, one considers
the current wealth level a (t) to be observed with some imprecision. Pricing various

19Particles in a �uid can move in three dimensions, left-right, up-down and back-forth. The
advection term would then have three partial deriviatives, one in each direction.
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types of assets (cars or other durable consumption goods like a house) might not be
straightforward and one can easily imagine an initial function which is zero to the left
of amin and to the right of amax and condenses all probability between these values
(which can of course be arbitrarily close to a (t)).20

5.2.4 A density gives a density

The Fokker-Planck equations have a very convenient property that easily allows to
show that they indeed describe densities (in the sense that their solutions integrate to
one). The only condition is that the initial functions integrate to one. We summarize
this in the following

Proposition 5 De�ne I (�) �
R1
�1 p (a; w; �)+p (a; b; �) da: Given the laws of motion

for p (a; z; �) from (31) and the fact of a bounded support [�b=r; a�w], this integral is
mass-preserving, i.e. dI (�) =d� = 0 for all �: Assuming initial densities, i.e. initial
functions p (a; z; t) � 0 such that I (t) = 1; the PDEs in (31) indeed describe the
dynamics of distributions over time.

Proof. see app. B.3
This is an extremely useful property as this implies that with an initial density

we know that all other functions p (a; w; �) + p (a; b; �) integrate to one and therefore
represent densities.

5.2.5 The long-run distribution of individual wealth

When we are interested in the long-run distribution of wealth and income only, the
time derivatives of the densities would be zero and the long-run densities would be
described by two linear ordinary di¤erential equations. This is true both for the
system in densities (31) and for the system for distributions (33). Both of these
systems can be solved numerically with standard packages.
The advantage of the FPEs for densities (31) consists in the fact that boundary

conditions are provided by the analysis of optimal consumption, see e.g. �g. 1. These
boundary conditions are

p (a�w; w) = 0; p (a�w; b) = 0: (34)

The intuition for p (a�w; w) = 0 comes from the saddle-path nature of the TSS � in
(22): There is one path going into � from the left and one going into � from the
right and two (not drawn) starting from � and going North and South. In saddle-
points of ODE systems, one can prove by linearization around the �x point that local
solutions of the ODE approach the saddle point asymptotically. Linearization here
is more involved given the special structure of our system (see fn. 16). Assuming
that the qualitative properties of local behaviour are not a¤ected by this structure,
we would observe asymptotic behaviour here as well and the TSS � would actually

20Our companion paper (Bayer and Wälde, 2011) proves that all initial distributions within the
range [�b=r; a�w] converge to a unique stable distribution in the long run.
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never be reached: p (a�w; w) = 0 would follow. The second boundary condition is then
an immediate consequence. As the state (a�w; b) can occur only through a transition
from (a�w; w) but the density at (a

�
w; w) is zero, p (a

�
w; b) = 0 as well.

5.2.6 The CARA case

For many purposes it is highly useful to work with a CARA utility function (see
e.g. Shimer and Werning, 2007, 2008 for models that include capital accumulation).
If we assume a CARA utility function as in (5), the FPEs (31) simplify dramatically
and become an autonomous linear partial di¤erential equation system,

@

@t
p (a; w; t) = mw

@

@a
p (a; w; t)� sp (a; w; t) + �p (a; b; t) ;

@

@t
p (a; b; t) = mb

@

@a
p (a; b; t) + sp (a; w; t)� �p (a; b; t) :

Letting the optimal consumption path under CARA be given by c (a; z) = ra + z +
mz; the parameters mz need to be such that Bellman equations for the states of
employment and unemployment are satis�ed.
Any densities implied by models of this type must obey these equations. It is

known that there are various closed-form solutions for these equations for speci�c ini-
tial distributions of wealth. It is an open question whether these closed-form solutions
actually describe densities.21 The method of characteristics is the standard tool to
transform PDE systems into (larger) ODE systems and to understand the dynamics
of distributions analytically or numerically. We leave this for future research.

6 The aggregate distribution of wealth and em-
ployment

Using all the results we collected so far on individual behaviour, we are now in an
easy position to describe the aggregate distribution of wealth and employment. One
statistic one generally would like to understand is the share of the population which
has a wealth below a certain level. The population consists of N individuals. Wealth
and labour market status of an individual i is described by the density pi (a; z; �)
given an initial condition (ai (t) ; zi (t)) drawn from an initial distribution identical
for all individuals. The density of each single individual is described by the PDEs in
(31). The density of individual wealth (without taking the labour market status into
account) is pi (a; �) from (30).
Now de�ne the share of individuals in the entire population with wealth be-

low a certain level a at some point in time � > t as H (a; �) � �Ni=1I (ai (�)) =N
where I (ai (�)) is the indicator function taking a value of 1 if ai (�) < a and 0
otherwise. As the ai (�) are identically and independently distributed, the strong

21We can not apply prop. 5 as the support of wealth would not be bounded for CARA �at least
not as long as linear optimal consumption paths are employed, as is standard in the literature.
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law of large numbers holds and we obtain limN!1H (a; �) =
R a
�b=r p (x; �) dx: In

words, the share of individuals in our population with wealth below a is given by
the probability that an individual has wealth below a. Computing the derivative of
the distribution function gives the density of wealth for the population as a whole,
h (a; �) � d

da

R a
�b=r p (x; �) dx = p (a; �) :

When we are interested in wealth distributions for each labour market status
individually, we can de�ne H (a; z; �) � �Ni=1I (ai (�) ; z (�)) =N where the indicator
function takes the value of one if ai (�) < a and z (�) = z: The density is then given
by h (a; z; �) = p (a; z; �) :
As has been stressed in the discussion after (28), the initial condition (a (t) ; z (t))

can itself be random. This means that a solution of (31) with an initial distribution
for a and z capturing some real world distribution of wealth and employment status
provides a prediction how this aggregate distribution evolves over time. We describe
our initial conditions by two subdensities, one for employed individuals and one for
unemployed individuals, similar to the subdensities in (30),

h (a; w; t) = hini (a; w) ; h (a; b; t) = hini (a; b) :

Empirical information needed to �nd plausible initial functions (or to estimate them)
is the distribution of wealth for employed and unemployed workers. If the share of
unemployed workers is x%, the density hini (a; w) must integrate to x/100, given the
property of the subdensity p (a; w; �) as shown in (29). If one is primarily interested in
understanding the prediction for the aggregate distribution of wealth, any reasonable
functions with range [�b=r; a�w] and satisfying (29) will do.

7 Conclusion

The objective of this paper was to introduce Fokker-Planck equations as a tool to
analyse the dynamics of distributions. We presented the usefulness of these equations
by analysing the example of a frictional labour market model that allows individuals
to save.
Allowing for savings in standard matching and search models is of high relevance

given that individuals would like to self-insure in the presence of uninsurable risk.
We derive Keynes-Ramsey rules for optimal consumption, analyse them for di¤erent
levels of interest rates, illustrate optimal consumption behaviour of workers in a phase-
diagram and provide an existence proof for optimal consumption paths.
Fokker-Planck equations (FPEs) for search and matching models are quasi-linear

partial di¤erential equations for constant relative risk aversion and linear partial dif-
ferential equations for constant absolute risk aversion.22 FPEs describe the density
of state variables at each point in time. We therefore do not restrict our analysis
to stationary states but can analyse the entire transition path of densities. When
transformed into partial di¤erential equations which describe distribution functions,

22While we have looked at one example for a search and matching model only, this linearity would
survive as long as uncertainty stems only from Poisson processes.
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a very intuitive economic interpretation can be provided. The evolution of wealth of
workers is subject to stochastic changes due to the transition between the state of
employment and unemployment. The evolution of wealth is also determined by de-
terministic factors (the advection term) which stem from the accumulation of wealth
while employed and dissaving while unemployed. The derivation of the FPEs in the
appendix is such that the principles behind the various steps are explained in a very
accessible way. This should allow to use these tools in other setups as well.
The analysis of distributions of labour market status and wealth in an economy

with many agents has also been undertaken. Using a standard law of large numbers,
aggregate shares in the population can be linked to individual probabilities. This
allows to close the model and obtain general equilibrium results. An additional ad-
vantage of FPEs is their promise for fast computation of densities. This should make
this approach very suitable for structural estimation.
A problem often encountered in structural estimation with micro data is the lack

of model guidance on how to control for aggregate time-series e¤ects. Future work can
address this issues by �rst allowing for explicit transitional dynamics. This would re-
quire time varying factor rewards and thereby a generalization of the Keynes-Ramsey
rules and of the derivation of the FPEs. Eventually, one should allow for aggregate
stochastic disturbances. This would yield exciting and highly promising new results
opening up new avenues for estimation.

A Appendix

This appendix contains all proofs and derivations omitted in the main part.
For simple reference in what follows and to simplify notation, de�ne

x(a) � c(a; w); y(a) � c(a; b); (A.1)

and express the reduced form (21) as

_x(a) =
r � �+ s

h�
x(a)
y(a)

��
� 1
i

ra+ w � x (a)

x (a)

�
; (A.2a)

_y(a) =
r � �� �

h
1�

�
y(a)
x(a)

��i
ra+ b� y (a)

y (a)

�
: (A.2b)

A.1 Proof of prop. 3 concerning Keynes-Ramsey rule

A.1.1 Proof of part (i)

� A local result

We �rst show that consumption c (aw; w) rises in time for wealth smaller than but
close to a�w.
Given that, by ass. 1, the number of sign changes of �0 (a) in any interval for a of

�nite length is �nite, for any a0 we can �nd an " > 0 such that � (a) � x (a) =y (a) is
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monotonic in [a0 � "; a0]. Exploiting this for a�w; whatever the properties of relative
consumption, we can always �nd an " such that one of the following three cases must
holds for 
" � [a�w � "; a�w[

(i)
(ii)
(iii)

9=; �0 (a)ja2
"

8<:
<
>
=

9=; 0:
Note that we do not make any statement about the derivative in a�w: In fact, in case
(i) �0 (a)ja2a�w can be negative or zero, in case (ii), it can be positive or zero.

Lemma 1 (a) Consumption of employed workers rises over time for a wealth level
a 2 
" if and only if case (i) holds,

dc (aw(�); w)

d�
> 0 for aw(�) 2 
" , case (i) holds.

(b) Consumption c (aw(�); w) falls over time for aw(�) 2 
" if and only if (ii) holds.

Proof. (a) By (15), dc(aw(�);w)
d�

> 0 , c (aw(�); w) =c (aw(�); b) > 1= . As
c (a�w; w) =c (a

�
w; b) = 1= at a�w, as w and b are parameters and using ass. 1, this

is a condition on the derivative of relative consumption with respect to wealth a in

": dc (aw(�); w) =d� is positive for aw(�) 2 
" if and only if case (i) holds.
(b) By (15), consumption falls over time if relative consumption lies below 1= :

This can be the case in 
" only if case (ii) holds.

Lemma 2 Relative consumption falls in wealth for a 2 
", �0 (a)ja2
" < 0; i.e. case
(i) holds.

Proof. a) Assume that case (ii) holds, i.e. �0 (a)ja2
" > 0. Then, by lem. 1,
dc(aw(�);w)

d�
< 0 for aw(�) < a�w: Consumption of unemployed workers would still de-

crease in time for all wealth levels. In our set Qv from (23), daw(�)
d�

> 0 and therefore
dx(a)
da

< 0: As dc(ab(�);b)
d�

< 0 and dab(�)
d�

< 0 in Qv; we know that
dy(a)
da

> 0: As a conse-
quence, �0 (a) < 0: This contradicts the assumption that case (ii) holds and case (ii)
can be excluded.
b) Now assume that case (iii) holds, i.e. relative consumption is �at, �0 (a)ja2
"[a�w =

0. As c (a�w; w) =c (a
�
w; b) = 1= , dc (aw(�); w) =d� = 0 for aw(�) 2 
":As dc (ab(�); b) =d� <

0; relative consumption is not constant �which contradicts the assumption that rela-
tive consumption is �at in wealth. As case (iii) is thereby excluded as well, the proof
is complete.

� A global result

We now complete the proof by a global result on consumption growth.

Lemma 3 Consumption c (aw; w) (a) rises in time for all a < a�w and (b) decreases
in time for all a > a�w.
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Proof. (a) Imagine to the contrary of �c (aw; w) rises in time for all a < a�w�that
there is an interval ]�1;�2[ with �2 < a�w such that this is is the last interval before
a�w where c (aw; w) falls in time,

dc (aw(�); w) =d� < 0; 8 �1 < aw(�) < �2 < a�w: (A.3)

We now proceed as in the proof of lem. 2. As daw(�)
d�

> 0 in Qv; this would imply that
dx(a)
da

< 0 for �1 < a < �2: We know that
dy(a)
da

> 0 in Qv: Hence, we would conclude
that

�0 (a) < 0; 8 �1 < a < �2: (A.4)

By (15), the assumption in (A.3) would hold if and only if relative consumption
c(aw;w)
c(aw;b)

is below 1= for �1 < a < �2:
dc(aw(�);w)

d�
< 0 , c(aw(�);w)

c(aw(�);b)
< 1= : As x(a)

y(a)
is

continuous in wealth by ass. 1 and as case (i) holds by lem. 2, x(a)
y(a)

can be smaller
than 1= only if there is some range ]�3;�2[ in which �0 (a) > 0: (An example of such
a path is shown in �g. 3.) This is a contradiction to the conclusion in (A.4). Hence,
consumption must rise in time for all a < a�w:
(b) This proof is in analogy to the proof of (a).

Figure 3 An example for relative consumption � (a) � x(a)
y(a)

A.1.2 Intermediary steps

Before we prove the rest of prop. 3, we need some further intermediary results �
which, however, are of some interest in their own right. Given that marginal utility
from (4) is positive and decreasing, u0 (c) > 0 and u00 (c) < 0; we can establish that
x (a) > y (a) ; i.e. consumption in the state of employment is larger than in the state of
unemployment, keeping wealth constant. We prove in passing that the value functions
V (a; z) are strictly concave in wealth a:
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Lemma 4 Consumption rises in wealth, ca (a; z) > 0:

Proof. Prop. 3 (i) shows that dc (aw(�); w) =d� > 0 in Qv: As daw(�)=d� > 0 as
well, the derivative dx (a) =da in (21) is positive in Qv:

Lemma 5 As marginal utility from consumption is positive, the value function V (a; z)
rises in wealth, Va (a; z) > 0:

Proof. The �rst-order condition for optimal consumption is given by (B.3) in the
Referees�appendix and reads

u0 (c (a; z)) = Va (a; z) : (A.5)

As marginal utility is positive by (4), the value function rises in wealth.

Lemma 6 As u00 (c) < 0 and as consumption rises in a by lemma 4, the value func-
tion is strictly concave in a.

Proof. The partial derivative of the �rst-order condition with respect to wealth
implies

u00 (c (a; z)) ca (a; z) = Vaa (a; z) : (A.6)

As u00 (c (a; z)) < 0 from the concavity of (4) and ca (a; z) is positive by lem. 4,
Vaa (a; z) must be negative. With lem. 5, the value function is strictly concave.

Lemma 7 The shadow price for wealth is higher in the state of unemployment,
Va (a; b) > Va (a; w) :

Proof. The derivation of the Keynes-Ramsey rule gives us (see app. B.1)

(�� r)Va (a; z)� s (z) [Va (a; b)� Va (a; w)]� � (z) [Va (a; w)� Va (a; b)]

= [ra+ z � c (a; z)]Vaa (a; z) :

In state z = w; this means

(�� r)Va (a; w)� s (z) [Va (a; b)� Va (a; w)] = [ra+ w � x (a)]Vaa (a; w) : (A.7)

Given the region we are interested in (where ra+w� x (a) > 0) and given lemma 6,
the right-hand side is negative. Hence, the left-hand side must be negative as well.
As (�� r)Va (a; w) is positive due to r < �, the second term must be negative. This
is the case only for Va (a; b) > Va (a; w) :

Lemma 8 Consumption of the employed worker is higher than consumption of the
unemployed worker, x (a) > y (a) :

Proof. As Va (a; b) > Va (a; w) ; the �rst-order condition implies u0 (y (a)) >
u0 (x (a)) : As the marginal utility is decreasing, x (a) > y(a):
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A.1.3 Proof of parts (ii) and (iii)

(ii) By (17), dc (ab(�); b) =d� < 0, u0 (c (ab(�); w)) < {u0 (c (ab(�); b)) where { � 1�
r��
�
� 1 as r � �: As u0 (c (ab(�); w)) < u0 (c (ab(�); b)) with c (ab(�); w) > c (ab(�); b)

from lem. 8, this condition always holds.
(iii) This follows from solving (19) for relative consumption.

A.2 Proof of theo. 1 - existence of an optimal consumption
path

A.2.1 Preliminaries

The natural borrowing limit implies that any solution to (A.2) must satisfy

y (�b=r) = 0: (A.8)

In what follows, we will use classical theorems for initial value problems for ODEs.
Currently, we have formulated our system (A.2) as a terminal value problem, since
the de�nition of the optimal consumption path in def. 2 uses a terminal condition at
the end of the interval [�b=r; a�w] under consideration. Using the notation from (A.1),
this terminal condition can be written in compact form as

� � �v (â) = (â; xv (â) ; yv (â)) : (A.9)

Note that � depends on v
For ease of notation and to help intuition, we shall now recast the problem into a

classical initial value problem, i.e. we will require the value � to be attained at the
�xed beginning � = 0 of an interval [0; � �], on which we study the problem. To this
end, it is more useful to work with an autonomous system. Hence, we rewrite (A.2)
by including m (a) = a as third variable which �replaces�wealth a, which now purely
serves as a parameter, i.e. as the independent variable. By using (A.1), this gives
the system

_m(a) = 1;

_x (a) =
r � �+ s

h�
x(a)
y(a)

��
� 1
i

rm (a) + w � x (a)

x (a)

�
;

_y (a) =
r � �� �

h
1�

�
y(a)
x(a)

��i
rm (a) + b� y (a)

y (a)

�
:

Now de�ne � � â � a, x1 (�) � m (â� �), x2 (�) � x (â� �), x3 (�) � y (â� �) :
Then, d

d�
x1 (�) � _x1 (�) =

d
d�
m (â� �) = d

d[â�a]m (a) = �
d
da
m (a) = � _m (a) : Doing
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the same for x and y; the �inverted�autonomous system therefore reads

_x1 (�) = �1; (A.10a)

_x2 (�) = �
r � �+ s

h�
x2(�)
x3(�)

��
� 1
i

rx1 (�) + w � x2 (�)

x2 (�)

�
; (A.10b)

_x3 (�) =
r � �� �

h
1�

�
x2(�)
x3(�)

��i
rx2 (�) + b� x3 (�)

x3 (a)

�
; (A.10c)

where now _xi denotes the derivative of xi(�) with respect to � , i = 1; 2; 3.

De�nition 3 Given (A.10) and for � � 0; let X(� ; �) = (x1(�); x2(�); x3(�)) denote
the solution of (A.10) started at X(0; �) = � 2 Rv;	 from (A.9) where �b=r � â �
	+v�w

r
. For later use, we also introduce the notation xi(�) = xi(� ; �), i = 1; 2; 3.

By passing from (A.2) to (A.10) we have reverted the time-direction �more pre-
cisely, in our setting, the wealth-direction �and turned a non-autonomous system into
an autonomous one by including the independent variable as an additional component
of the solution. Thus, the curve a 7! (a; x(a); y(a)) with terminal value x(â) = xv(â),
y(â) = yv(â) is equal to the curve � 7! X(� ; �) with � = �(â), which is the solution
of an initial value problem in the classical sense. However, the parametrization is
reverted in the sense that in the former case we start at the left endpoint (�left� in
the sense of the smallest value of the a-component) and end in the right endpoint,
whereas in the latter case we start at the right endpoint and end in the left one. In
particular, the absolute value of the speed along the curve is equal, but the direction
is reversed.

A.2.2 Continuity of the solution in initial values

In order to be able to apply classical theorems, we need �nite derivatives on the right-
hand side of an ODE system. The right-hand side of the ODE (A.2), however, exhibits
singularities at the boundary y = ra+b of Qv: This is of particular importance as the
de�nition of the optimal consumption path in De�nition 2 uses y (�b=r) = 0 �which
lies on this boundary. We obtain �nite derivatives by (i) a coordinate transformation
and by (ii) (temporarily) reducing the set on which we are interested in a solution by
demanding that y � ". We will later show how this reduction can then be removed
again by passing "! 0.

Lemma 9 (Coordinate transformation) Let x(a) and y(a) be solutions of (A.2). The
mapping a 7! y(a) is bijective. Change variables a = a(y) and consider x and a as
functions of y. Then

x0(y) � dx(y)

dy
=
r � �+ s

h�
x(y)
y

��
� 1
i

r � �� �
h
1�

�
y
x(y)

��i x(y)
y

ra(y) + b� y

ra(y) + w � x(y)
; (A.11a)

a0(y) � da(y)

dy
=

ra(y) + b� y

r � �� �
h
1�

�
y
x(y)

��i �
y
: (A.11b)
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Proof. Since _y(a) > 0, y is a bijective function of a: As a0(y) = 1
_y(a)
, we obtain

the second equation by inserting (A.2b). The �rst equation follows from �dividing
(A.2a) by (A.2b)�.
We are going to avoid the singularity at y (�b=r) = 0 by temporarily requiring

these properties only to hold �up to an arbitrarily small number "�. We do this by
considering the domain R";v;	 as given in the following

De�nition 4 Fix a numbers " > 0 and de�ne

R";v;	 = Rv;	 \
�
(a; x; y) 2 R3 j y � "

	
: (A.12)

This de�nition implies that we temporarily replace the requirement that y (�b=r) =
0 by y (a) = " for some �b=r � a � �b=r + "=r.

Lemma 10 The right-hand side given in (A.11) is uniformly Lipschitz on R";v;	.

Proof. Consider the right-hand side of (A.11a). The only possible points, where
the Lipschitz constant can explode, are when the denominators in the right-hand side
become 0 or when a term under a fractional power (i.e. with exponent �) becomes 0.
In R = R";v;	, y is uniformly bounded away from 0 and x is uniformly bounded away
from ra+w. Moreover, note that r����

�
1�

�
y
x

���
= 0 if and only if

�
y
x

��
= 1� r��

�
.

Now 1� r��
�
> 1 by the assumption that r < �. On the other hand, y < x, implying

that
�
y
x

��
< 1. Consequently, all the denominators are uniformly bounded away from

0.
For the fractional powers, note that x=y > 1 is trivially uniformly bounded away

from 0. As x � 	,
y

x
>

�

	

is uniformly bounded away from 0 on R";v;	. This shows that (A.11a) is uniformly
Lipschitz.
The same arguments show that the right-hand side of (A.11b) is uniformly Lip-

schitz, too.
Since the right hand side of (A.11) is uniformly Lipschitz, we can now apply the

classical theory of ODEs. For instance, we have existence and uniqueness of the
solution by the Picard-Lindelöf theorem, see Mattheij and Molenaar (2002, th. II.2.3,
th. II.3.1). Moreover, the solution will be continuous as a function of the initial
value, see, again, Mattheij and Molenaar (2002, th. II.4.7). In the lemma below, we
will see how this even implies the corresponding properties for the non-transformed
system (A.10).

Lemma 11 (Continuity in initial values) Consider the set R = R";v;	 from (A.12)
and the solution X(� ; �) from De�nition 3 with initial condition � given in (A.9).
The solution X(� ; �) depends continuously on its initial values �. More precisely,
there is a constant L > 0 and an increasing map � : [0;1[! [0;1[ (a modulus of
continuity) with limt&0 �(t) = �(0) = 0 such that

kX(�1; �1)�X(�2; �2)k � Lk�1 � �2k+ �(j�1 � �2j);
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provided that �1;�2 2 R and X(� ; �i) 2 R for all 0 � � � max(�1; �2), i = 1; 2.
Here, k�k denotes the Euclidean norm on R3.

Proof. By classical results from the theory of ordinary di¤erential equations, see
for instance Mattheij and Molenaar (2002, th. II.4.7), the solution of an ODE-system
depends continuously on the initial data as long as the right-hand side is uniformly
Lipschitz. More precisely, let Y (� ; �) denote the solution of an ODE with uniformly
Lipschitz right-hand side (with Lipschitz constant C), started at Y (�0; �) = �, then

kY (� ; �1)� Y (� ; �2)k � exp (C(� � �0)) k�1 � �2k:

Now consider the transformed system (a(y); x(y)) from (A.11). By Lemma 10,
the right-hand side is uniformly Lipschitz. The solution of (A.11) therefore de-
pends continuously on its initial data (a0; x0). It is then obvious that the trajectory
(a(y); x(y); y) depends continuously on (a0; x0; y0): As system (A.11) is a repara-
meterized version of (A.2), the solution (a; x (a) ; y (a)) to (A.2) from def. 2 is also
continuous in its boundary conditions �even though the right hand side of (A.2) is
not uniformly Lipschitz. Similarly, as (A.10) is just a reparameterization of (A.2),
the solution X (� ; �) to (A.10) from def. 3 is also continuous in its initial condition
�.
In order to get the estimate, we now consider the ODE (A.10) and note that

we only consider it on the compact set R";v;	. In the parametrization by y given
in (A.11), y is the independent variable, i.e. plays the role of � in the above estimate.
By compactness of R";v;	, y only runs through a bounded set, therefore we can rewrite
the constant in the above inequality as exp(C(y � y0)) � L for some suitable L > 0.
Given � 2 R";v;	. Then a�w � 	�w+v

r
, which implies that the solution X(� ;w) can

only stay inside R";v;	 until time � = 	�w+v+b
r

, at most. Consider

D = f(�;�) 2 [0;1[�R";v;	 jX(� ; �) 2 R";v;	g:

Then D is a closed subset of
�
0; 	�w+v+b

r

�
� R";v;	, implying that D is compact.

Consequently, X : D ! R";v;	 is uniformly continuous, which implies the existence
of a modulus of continuity � with

kX(�1; �1)�X(�2; �2)k � �(j�1 � �2j+ k�1 � �2k):

The inequality in the lemma then follows by the triangle inequality.

A.2.3 Continuity of the �rst hitting-wealth in initial values

While we have shown in the previous section that the solutions to all systems (A.2),
(A.10) and (A.11) are continuous in initial values, this does not automatically imply
that the solutions will be continuous on the boundary of the domain we are interested
in, in the sense that the place where the solution leaves the domain R might not
depend continuously on the initial data. This will now be proved in this section.
In the proofs and also in a later step, we will use the following
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De�nition 5 (First hitting-wealth) Consider the set R";v;	 from (A.12) and the solu-
tion X (� ; �) to the system (A.10). Consider the path y (a) that corresponds to x2 (�)
of this solution. Then we de�ne â1st = f (â) as the ��rst hitting-wealth�(in analogy
to �rst hitting-time), i.e. the wealth level where the path y (a) hits any boundary of
R";v;	 for the �rst time. Similarly denote �(�) � inff� � 0 jX(� ; �) 2 @R";v;	g and
F (�) � X(�(�); �).

We know that â1st exists because in the set R";v;	 the derivatives in (A.10) are well-
de�ned and a solution therefore exists. Notice that â1st equals the �rst component of
F (�(â)).
We also need

De�nition 6 Let N � R";v;	 with

N =

�
�(â)

���� â 2 �� br ;  [w � v]� b

r [1�  ]

��
be the set of all potential initial conditions from (A.9) for a solution in the sense of
def. 2. Here we implicitly assume that 	 is large enough that indeed N � R";v;	.23

De�ne M as
M =M1 [M2 [M3 � R";v;	 (A.13)

with

M1 = f(a; x; y) 2 R";v;	 j y = ra+ bg;
M2 = f(a; x; y) 2 R";v;	 j a = �b=rg;
M3 = f(a; x; y) 2 R";v;	 j y = "g:

This set will turn out to be the set of all potential �rst hitting-wealths.

Since we know that x > y, the trajectory will not hit the boundary of R at the
part fx = yg. Therefore, we have the

Corollary 1 F : N ! M is a well-de�ned map, i.e. for every � 2 N , the corre-
sponding solution path X(� ; �) exists and stays in R";v;	 until it �nally hits M (and
no other boundary of R";v;	).

Before formulating the main lemma of this section, let us �rst derive a simple
bound on the derivative _y(a) of the consumption of the unemployed.

Lemma 12 For (a; x; y) in the interior of Qv from (23), we have

_y(a) � r � �

ra+ b� y(a)

y(a)

�
:

23This is the only necessary condition on 	 for the construction to work. In the sequel, we shall
assume this condition without further notice.
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Proof. By (A.2b) we have

_y (a) =
r � �� �

h
1�

�
y(a)
x(a)

��i
ra+ b� y (a)

y (a)

�

=

0@ r � �

ra+ b� y (a)
�
�
h
1�

�
y(a)
x(a)

��i
ra+ b� y (a)

1A y (a)

�
>

r � �

ra+ b� y (a)

y (a)

�
:

The last inequality follows from the fact that
�[1�( y(a)x(a))

�
]

ra+b�y(a) is negative (and therefore

��[1�( y(a)x(a))
�
]

ra+b�y(a) is positive) as ra+ b� y (a) is negative in the interior of Qv.
The key result in this section is presented in

Lemma 13 The map F : N !M is continuous.

Proof. We need to prove that for every � 2 N and every � > 0 there is an � > 0
such that

k�0 � �k < � =) kF (�0)� F (�)k < �: (A.14)

We start the proof by �xing �0; � 2 N such that k�0 � �k < � for some � > 0.
Let us �rst assume that �(�0) � �(�). By the triangle inequality and Lemma 11, we
have

kX(�(�0); �0)�X(�(�); �)k � kX(�(�0); �0)�X(�(�0); �)k+
+ kX(�(�0); �)�X(�(�); �)k

� L1 k�0 � �k+ �(j�(�0)� �(�)j); (A.15)

for a constant L1 > 0 and the modulus of continuity �. In order to get an estimate
for j�(�0)� �(�)j, we have to distinguish between three di¤erent cases.
Case (i): F (�0) 2M1.

By Lemma 12, there are constants L2; `2 > 0 such that _y � L2 for jy� (ra+ b)j � `2.
More precisely, we can choose `2 > 0 freely and obtain the bound for L2 = 1

`2

(��r)"
�
. If

L1� � `2, we can bound the absolute value of the derivative of x3(� ; �) from below by
L2 (for t � �(�0)). This implies that the path X(� ; �) hits M1 before time �(�0)+ �
for

�(L2 � r) = `2 () � =
`2

L2 � r
;

unless it hits another boundary of R";v;	 before that. Inserting into (A.15), this gives
the estimate

kF (�0)� F (�)k � L1� + �

�
`2

L2 � r

�
:

Choosing `2 = L1�, the bound is smaller than � provided that

�

 
L1

C
L1�

� r
�

!
+ L1� < �; (A.16)
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where C � (��r)"
�
. Note that the left hand side in (A.16) converges to zero for

� ! 0, therefore we can �nd an �0(�) > 0 (only depending on the constants C, L1
and r and the modulus of continuity �, but not on �0 or �) such that the desired
inequality (A.14) holds for � < �0. We have tacitly assumed that L2 = C=`2 =

C
L1�

>
r, which can be realized by choosing � small enough.
Case (ii): F (�0) 2M2.

Let â denote the �rst component of �, and â0 the �rst component of �0. Note that
x1(� ; �) = â � � , for every � � 0. Since X(�(�0); �0) 2 M2, we have �b=r =
x1(�(�0); �0) = â0 � �(�0), implying that �(�0) = â0 + b=r. On the other hand,
x1(�(�); �) � �b=r, implying that �(�) � â+ b=r. Combining these two results, we
obtain

j�(�0)� �(�)j = �(�)� �(�0) � â� â0 � k�0 � �k :
Consequently, the inequality (A.15) implies

kF (�0)� F (�)k � L1 k�0 � �k+ �(k�0 � �k) � L1� + �(�);

and (A.14) holds for � small enough such that

L1� + �(�) < �: (A.17)

Case (iii): F (�0) 2M3.
Since x3(�(�0); �0) = ", we have 0 � x3(�(�0); �)� " � L1�. By Lemma 12, we can
�nd a constant L3 > 0 such that _y � L3 on R";v;	 �note that L3 depends on ". Thus,
X(s; �) will hit the boundary M3 before time �(�0) + � with � = L1�=L3, unless it
hits another boundary of R";v;	 before. In any case, j�(�0)� �(�)j � L1�=L3, and
we obtain

kF (�0)� F (�)k � L1� + �

�
L1
L3
�

�
;

and (A.14) is satis�ed for

L1� + �

�
L1
L3
�

�
< �: (A.18)

Choosing � small enough that both (A.16) and (A.17) and (A.18) are satis�ed,
settles the proof for �(�0) � �(�). Notice that none of the conditions (A.16), (A.17)
and (A.18) depends on �0. Therefore, in the other case �(�0) � �(�), we can just
revert the rôles of � and �0 and obtain the same results in cases (i), (ii) and (iii).

A.2.4 Existence of a solution

This section proves our main result formulated in Theorem 1.
Proof. Fix some " > 0 and consider R";v;	. By an intermediate value theorem

applied to F : N !M , we will obtain a point or points � 2 N such that F (�) 2M3

as used in (A.13), i.e. x3(�(�); �) = " provided that we can show the existence of
points (that could be called upper and lower bounds) �minv ;�maxv 2 N with F (�minv ) 2
M2 and F (�maxv ) 2 M1. (Note that F = F" and all the Mi = Mi("), i = 1; 2; 3,
depend on " and v, but not on 	, provided that 	 is large enough.)
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Choose

�minv = �(�b=r) = (�b=r; w � b� v;  [w � b� v]); �maxv = �

�
 (w � v)� b

(1�  )r

�
:

By construction, both �minv and �maxv are contained in N . Moreover, we trivially
have F"(�minv ) 2 M2("), F"(�maxv ) 2 M1(") for every " > 0 small enough. Note, in
particular, that Lemma 13 also implies continuity of F in the boundary points �minv

and �maxv of N . Therefore, the image set F"(N) is a connected set, with non-empty
intersection with both M1 and M2. Since the distance

dist(M1;M2) = inf fk�1 � �2k j�1 2M1; �2 2M2g =
"

r
> 0;

we may conclude that F"(N) \M3(") 6= ;. This establishes that there must be a �
such that F" (�) 2M3: In words, there is an initial condition � (â) such that the path
(a; x(a); y (a)) hits the boundary at y = ":
Now de�ne

N3(") � F�1" (M3(")) = f� 2 N jF"(�) 2M3(")g :

By continuity of F" : N !M("), the bounded set N3(") is closed and thus compact.
Moreover, the family (N3("))">0 is directed in the sense that

0 < "2 < "1 =) N3("2) � N3("1):

By standard results from topology, the intersection of a directed family of non-empty,
compact sets is non-empty, i.e.

N3(0) �
\
">0

N3(") 6= ;:

Indeed, take a decreasing sequence ("n)n�1 of positive numbers converging to zero.
For every n choose some �n 2 N3("n). By compactness of the largest set N3("1),
we can �nd a subsequence nk such that (�nk)k�1 converges to some �. Note that
� 2 N3("nk) for every k, since � = liml!1; l�k �nl and each such �nl lies in the
closed set N3("nk). Now choose any " > 0 and pick a k such that "nk < ". Then
� 2 N3("nk) � N3("), implying that � 2

T
">0N3(").

We claim that every element � 2 N3(0) corresponds to an aTSS. Indeed, the path
(a; x(a); y(a)) with terminal value (â; x̂; ŷ) = � (corresponding to the path X(� ; �))
satis�es the ODE (A.2) on ]� b=r; â]. Moreover, it starts at N by construction, and
for every " > 0, it takes on the value " somewhere on the interval ]� b=r;�b=r + "[.
Thus, using monotonicity of y, we may conclude that

lim
a&�b=r

y(a) = 0:

This establishes that there is an initial condition � (â) such that the path y (a) hits
the boundary at y = 0 in the sense that y(�b=r) = 0.
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Note that it is essential for the proof of Theorem 1 that the trajectory X(� ; �) �
or, equivalently, (a; x(a); y(a)) �does not depend on ", which only determines �how
long�we observe the trajectory. This means that we observe the trajectory X(� ; �)
for 0 � � � �(�), with the hitting time �(�) obviously depending on ". Therefore,
we can, for �xed � 2 N3(0), easily take the limit " ! 0, which means that we take
the limit in �(�), but do not change the trajectory itself. As a consequence, the ODE
is automatically satis�ed for the limit, at least for 0 � � < lim"!0 �(�).
Let us illustrate why we had to use the speci�c properties of the dynamic sys-

tem (A.10) in the proof of lem. 13. Continuity in initial conditions does not imply
continuity of ��rst hitting values�in general. Indeed, the �rst hitting times are inher-
ently non-continuous functionals, even if both the paths and the set, which determines
the hitting times, are smooth.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4 Non-continuity of the �rst hitting time

To see this most clearly, consider the di¤erential equation _z (t) = (1� z (t)) z (t)

whose solution is z (t) =
�
1 +

�
z�10 � 1

�
e�t
��1

: This solution is continuous in the
initial level z0 (for z0 > 0 which we assume) and the solution is plotted for z0 2
f0:1; 0:2g in �g. 4. Now consider the �rst-hitting time on the straight line 0:05 + t=5
as drawn. Obviously, this time is not continuous in the initial values z0.

A.3 Deriving the Fokker-Planck equations (31)

This section picks up after sect. 5.2.1 and derives the Fokker-Planck equations of
the wealth-employment process (a(t); z(t)). The derivation is in great detail as this
facilitates applications for other purposes. Before we go through individual steps,
here is the general idea. Step 1: We start with some function f having as arguments
the variables whose density we would like to understand. We compute the di¤erential
of this function in the usual way and also compute its expected change. Step 2: The
starting point here is Dynkin�s formula. This formula, intuitively speaking, gives the
expected value of some function f; whose arguments are the random variables we are
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interested in, as the sum of the current value of f plus the integral over expected
future changes of f . The expected change of f is expressed by using the density of
our random variables. The Dynkin formula is di¤erentiated with respect to time.
Step 3: By using integration by parts or the adjoint operator, we get an expression
for the change of the expected value of f: Step 4: A di¤erent expression for this
change of the expected value can be obtained by starting from the expected value
and di¤erentiating it. Step 5: Equating the two gives the di¤erential equations for
the density.
It should be kept in mind that this approach is relatively general and not at

all restricted to our system. As long as there is one to several stochastic processes
described by stochastic di¤erential equations, this approach can be used to obtain
a description of the densities. It does in particular not matter what the source of
uncertainty is. Brownian motion works just as well as Poisson processes, as would a
combination of the two or the more general Levy processes.

A.3.1 The expected change of some function f

Assume there is a function f having as arguments the state variables a and z. This
function has a bounded support S, i.e. f(a; z) = 0 outside this support.24 Heuristi-
cally, the di¤erential of this function, using a change of variable formula,25 gives

df (a (�) ; z (�)) = fa (:) fra (�) + z (�)� c (a (�) ; z (�))g d�
+ ff (a (�) ; z (�) + �)� f (a (�) ; z (�))g dq�
+ ff (a (�) ; z (�)��)� f (a (�) ; z (�))g dqs:

Due to the state-dependent arrival rates (see tab. 1), only one Poisson process is
active at a time.
When we are interested in the expected change, we need to form expectations.26

Applying the conditional expectations operator E� and dividing by d� yields the
heuristic equation

E�df (:)

d�
= fa (:) fra (�) + z (�)� c (a (�) ; z (�))g

+ � (z (�)) [f (a (�) ; z (�) + �)� f (a (�) ; z (�))]

+ s (z (�)) [f (a (�) ; z (�)��)� f (a (�) ; z (�))] (A.19)

In what follows, we denote this expression by

Af (a (�) ; z (�)) � E�df (a (�) ; z (�))

d�
(A.20)

24We can make this assumption without any restriction. As we will see below, this function will
not play any role in the determination of the actual density.
25There are formal derivations of this equation in mathematical textbooks like Protter (1995). For

a more elementary presentation, see Wälde (2010, part IV).
26We view a (�) and z (�) with � � t as two stochastic processes which start in t and where initial

conditions a (t) and z (t) can be random variables. We therefore form expectations about df by using
the unconditional expectations operator E as the randomness of initial values are then also taken
into account. This is useful for its generality and also when it comes to applications (see sect. 5.2.3
on initial conditions and especially distributions).
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which is, more precisely, the in�nitesimal generator A de�ned by

Af(a; z) = lim
�&0

E (f(z(� + �); a(� + �))jz(�) = z; a(�) = a)� f(a; z)

�
:

Notice that Af(a; z) does not depend on � , because the Markov-process (a(�); z(�))
is time-homogeneous. We understand A as an operator mapping functions (in a and
z) to other such functions. Moreover, note that all test-functions, i.e. C1 functions of
bounded support, are in the domain of the operator A, i.e. the domain of all functions
f such that the above limit exists (for all a and z).

A.3.2 Dynkin�s formula and its manipulation

To abbreviate notation, we now de�ne x (�) � (a (�) ; z (�)) : The expected value of
our function f (x (�)) is by Dynkin�s formula (e.g. Yuan and Mao, 2003) given by

Ef (x (�)) = Ef (x (t)) +

Z �

t

E (Af (x (s))) ds: (A.21)

To understand this equation, use the de�nition in (A.20) and formally write it as

Ef (x (�)) = Ef (x (t)) +

Z �

t

Edf (x (s))

ds
ds = Ef (x (t)) +

Z �

t

Edf (x (s)) :

Intuitively speaking, Dynkin�s formula says that the expected value of f (x (�)) is the
expectation for the current value, Ef (x (t)) (given that we allow for a random initial
condition x (t)), plus the �sum of�expected future changes,

R �
t
Edf (x (s)) :

Let us now di¤erentiate (A.21) with respect to time � and �nd

@

@�
Ef (x (�)) =

@

@�

Z �

t

E (Af(x (s))) ds = E (Af (x (�))) ; (A.22)

where the �rst equality used that Ef(x (t)) is a constant and pulled the expectations
operator into the integral. This equation says the following: We form expectations in
t about f (x (�)) : We now ask how this expectation changes when � moves further
into the future, i.e. we look at @

@�
E [f (x (�))]. We see that this change is given by the

expected change of f(x (�)); where the change is Af (x (�)) :
We now introduce the densities we de�ned in sect. 5.2.1. The expectation operator

E in (A.22) integrates over all possible states of x (�) : When we express this joint
density as p (a; z; �) � p (a; � jz) pz (�), we can write (A.22) as
@

@�
Ef (x (�)) = E (Af (x (�)))

= pw (�)

Z 1

�1
Af (a; w) p (a; � jw) da+ pb (�)

Z 1

�1
Af (a; b) p (a; � jb) da:

Now pull pw (�) and pb (�) back into the integral and use p (a; z; �) � p (a; � jz) pz (�)
again for z = w and z = b. Then

@

@�
Ef (x (�)) =

Z 1

�1
Af (a; w) p (a; w; �) da+

Z 1

�1
Af (a; b) p (a; b; �) da

� �w + �b: (A.23)
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A.3.3 The adjoint operator and integration by parts

This is now the crucial step in obtaining a di¤erential equation for the density. It
consists in applying an integration by parts formula which allows to move the deriva-
tives in Af(x (�)) into the density p (x; �) : Let us brie�y review this method, without
getting into technical details. Given two functions f; g : R ! R and two �xed real
numbers c < d, the factor rule of di¤erentiation

d(f(x) � g(x)) = df(x) � g(x) + f(x) � dg(x) (A.24)

implies that f(d)g(d)�f(c)g(c) =
R d
c
f 0(x)g(x)dx+

R d
c
f(x)g0(x)dx; a formula referred

to as partial integration rule. In particular, it also holds for c = �1 and d = +1,
if the function evaluations are understood as limits for c ! �1 and d ! +1,
respectively. If f has bounded support, i.e. is equal to zero outside a �xed bounded
set, then the function evaluations at �1 vanish and we getZ +1

�1
f 0(x)g(x)dx = �

Z +1

�1
f(x)g0(x)dx: (A.25)

We now apply (A.25) to equation (A.23). We can do this as the expressions in
(A.23) �lost�all stochastic features. To this end, insert the de�nition of A given in
(A.20) together with (A.19) into (A.23). To avoid getting lost in long expressions, we
look at the both integrals in (A.23) in turn. For the second, observe that

Af (a; b) = fa (:) fra+ b� c (a; b)g+ � [f (a; w)� f (a; b)] ;

i.e. the term with s in (A.19) is missing given that we are in state b. Hence,

�b =

Z 1

�1
[fa (a; b) fra+ b� c (a; b)g+ � [f (a; w)� f (a; b)]] p (a; b; �) da

=

Z 1

�1
fa (a; b) fra+ b� c (a; b)g p (a; b; �) da

+

Z 1

�1
� [f (a; w)� f (a; b)] p (a; b; �) da:

Now integrate by parts. As this integral shows, we only need to integrate by parts for
the fa term. The rest remains untouched. This gives with (A.25), where g (x) stands
for fra+ b� c (a; b)g p (a; b; �) and x for a;

�b = �
Z 1

�1
f (a; b)

��
r � @

@a
c (a; b)

�
p (a; b; �) + fra+ b� c (a; b)g @

@a
p (a; b; �)

�
da

+

Z 1

�1
� [f (a; w)� f (a; b)] p (a; b; �) da: (A.26)

Now look at the �rst integral of (A.23). After similar steps (as the principle is the
same, we replace b by w and the arrival rate � by s in the last equation), this reads

�w = �
Z 1

�1
f (a; w)

��
r � @

@a
c (a; w)

�
p (a; w; �) + fra+ w � c (a; w)g @

@a
p (a; w; �)

�
da

+

Z 1

�1
s [f (a; b)� f (a; w)] p (a; w; �) da: (A.27)
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Summarizing, we �nd
@

@�
Ef (x (�)) = �w + �b

=

Z 1

�1
f (a; w)

�
�
�
r � @

@a
c (a; w)

�
p (a; w; �)� fra+ w � c (a; w)g @

@a
p (a; w; �)

�
da

+

Z 1

�1
s [f (a; b)� f (a; w)] p (a; w; �) da

+

Z 1

�1
f (a; b)

�
�
�
r � @

@a
c (a; b)

�
p (a; b; �)� fra+ b� c (a; b)g @

@a
p (a; b; �)

�
da

+

Z 1

�1
� [f (a; w)� f (a; b)] p (a; b; �) da: (A.28)

A.3.4 The expected value again

Let us now derive the second expression for the change in the expected value. By
de�nition, and as an alternative to the Dynkin formula (A.21), we have

Ef (x (�)) =

Z 1

�1
f (a; b) p (a; b; �) da+

Z 1

�1
f (a; w) p (a; w; �) da: (A.29)

When we di¤erentiate this expression with respect to time, we get

@

@�
Ef (x (�)) =

Z 1

�1
f (a; b)

@

@�
p (a; b; �) da

+

Z 1

�1
f (a; w)

@

@�
p (a; w; �) da: (A.30)

Note that we can use

@

@�

Z 1

�1
f (a; z) p (a; z; �) da =

Z 1

�1
f (a; z)

@

@�
p (a; z; �) da

as z and a inside this integral are no longer functions of time.

A.3.5 Equating the two expressions

We now equate (A.28) with (A.30). Collecting terms belonging to f (a; w) and f (a; b)
gives Z 1

�1
f (a; w)'wda+

Z 1

�1
f (a; b)'bda = 0; (A.31)

where

'w � �
�
r � @

@a
c (a; w) + s

�
p (a; w; �)� fra+ w � c (a; w)g @

@a
p (a; w; �)

+ �p (a; b; �)� @

@�
p (a; w; �)
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and

'b � �
�
r � @

@a
c (a; b) + �

�
p (a; b; �)� fra+ b� c (a; b)g @

@a
p (a; b; �)

+ sp (a; w; �)� @

@�
p (a; b; �) :

Obviously, the above equation is satis�ed if

'b = 'w = 0: (A.32)

These are the Fokker-Planck equations used in (31).
It is easy to see that the integral equation can only be satis�ed for all functions

f if these Fokker-Planck equations are satis�ed. Indeed, assume that 'b > 0 on an
interval I = [d � �; d + �]. One can �nd a non-negative function f smooth in a such
that f(a; w) = 0 for all a and

f(a; b) =

(
1; a 2 [d� �=2; d+ �=2];

0; a 2]�1; d� �] [ [d+ �;1[:

Inserting this test function into the integral equation givesZ 1

�1
f (a; w)'wda+

Z 1

�1
f (a; b)'bda = 0 +

Z d+�

d��
f (a; b)'bda > 0

by construction. Therefore, 'b = 0 has to hold for all a 2 R, and similarly for 'w.

B Referees�appendix

This appendix is available upon request.
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