

Johannes Gutenberg University Mainz Graduate School of Economics, Finance, and Management

Advanced Macroeconomic Theory 1 (Part 2)

2018/2019 winter term

Klaus Wälde (lecture) and Jean Roch Donsimoni (tutorial)

Contents

1	Intr	$ootnotesize ag{coduction}$
	1.1	What is macroeconomics?
	1.2	Who covers what?
	1.3	Who covers what?
Ι	Ec	conomic growth 2.0
2	The	e convergence debate 2.0
	2.1	Is there convergence?
	2.2	Questions for economic theory
3	Nec	oclassical growth theory 3.0
	3.1	Some background
	3.2	The Solow-Cass-Koopmans-Ramsey model
		3.2.1 The Solow model
		3.2.2 The issue of the optimal saving rate
		3.2.3 The model and optimal behaviour
		3.2.4 How to obtain Keynes-Ramsey-Rules: Hamiltonians [background] 3.12
		3.2.5 How to obtain Keynes-Ramsey-Rules: Dynamic Programming [background] 3.14

		3.2.6 Comparing dynamic programming to Hamiltonians [background] 3.22
	3.3	A phase diagram analysis
	3.4	More background on phase diagrams [background]
	3.5	What have we learned?
4	Nev	w growth theory: Incremental innovations 4.0
	4.1	Some background on the "new" endogenous growth theory
	4.2	The principle of endogenous growth theory
	4.3	The Grossman and Helpman model
	4.4	Optimal behaviour
	4.5	Equilibrium without choosing a numeraire
	4.6	Phase diagram illustration
	4.7	Knowledge spillovers yield long-run growth
	4.8	Non-scale models
		4.8.1 The empirical background
		4.8.2 The theoretical explanation
	4.9	What have we learned?
5	Nev	w growth theory: Major innovations 5.0
		The questions
		The production side 5.2

5.3	Excur	sion on Poisson processes [background]
	5.3.1	What are stochastic processes? [background]
	5.3.2	An intuitive understanding of a Poisson process [background] 5.9
5.4	Labou	ı <mark>r market</mark>
5.5	Consu	<u>ımers</u>
	5.5.1	Preferences and constraints
	5.5.2	Stochastic differential equations (SDEs) [background] 5.17
	5.5.3	Differentials for stochastic differential equations [background] 5.26
5.6	Maxir	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	5.6.1	Bellman equations for Poisson processes [background]
	5.6.2	The maximization problem in the growth model
5.7	Equili	brium
5.8	What	have we learned?
Exe	ercises	on economic growth 6.0
6.1	Exerc	<u>ises</u>
	6.1.1	Optimal Consumption
	6.1.2	Properties of the CRRA utility function (background only) 6.1
	6.1.3	Basics of dynamic programming
	6.1.4	Money in the utility function (background only) 6.2
	6.1.5	Phase diagrams: a general introduction

		1.6 Budget constraints: where do they come from? (background only)	6.5
		1.7 Innovation and growth: optimal demand for varieties	6.5
		1.8 Innovation and growth: the Keynes-Ramsey rule	6.5
		1.9 Innovation and growth: optimal behaviour of firms	6.6
		1.10 Equilibrium and reduced form	
		1.11 Creative destruction: major innovations	6.7
		1.12 Optimal saving under Poisson uncertainty (background only)	6.8
II	T	employment	7.0
			1.0
7	Fac	about unemployment	7.0
	7.1	efinitions	7.0
	7.2	nemployment stocks	7.3
	7.3	nemployment flows	7.4
	7.4	questions for economic theory	7.5
8	Mat	ning models of unemployment	8.0
	8.1	he literature	8.0
	8.2	asic structure	8.1
	8.3	asic unemployment dynamics	8.2

		8.3.1	An illustration
		8.3.2	Notation
		8.3.3	The dynamics of the unemployment rate
	8.4	The P	Fissarides (1985) model
		8.4.1	Match quality
		8.4.2	The dynamics of the unemployment rate
		8.4.3	Optimal behaviour of workers
		8.4.4	Vacancies and filled jobs
		8.4.5	Wages
		8.4.6	Job rejection
		8.4.7	Equilibrium and dynamic adjustment of the unemployment rate 8.23
		8.4.8	Response to an output shock
	8.5	What	have we learned?
)	Sea	rch un	employment 9.0
	9.1	The b	asic search model
		9.1.1	The basic idea
		9.1.2	Expected utility once employed
		9.1.2	Expected utility once employed (cont'd)
		9.1.3	The optimal search strategy
		9.1.4	The discounted expected utility (value function) of a job seeker

		9.1.5	Reservation wage	
		9.1.6	Hazard rates and average duration in unemployment	
	9.2	Non-st	rationary search	
		9.2.1	Institutional background	
		9.2.2	Empirical background	
		9.2.3	Two-tier unemployment benefit systems	
	9.3	What	have we learned?	
10	Sear	ch wit	th Bayesian learning 10.0	
	10.1	Bayesi	an learning	
		10.1.1	The standard expected utility framework	
		10.1.2	Subjective expected utility theory	
		10.1.3	Bayes' theorem	
		10.1.4	Economic literature on Bayesian learning	1
		10.1.5	Learning with continuous random variables	3
		10.1.6	Bayesian learning in continuous time	3
	10.2	Non-st	ationary search with Bayesian learning in equilibrium	3
		10.2.1	The model	4
		10.2.2	Workers	5
		10.2.3	Optimal behaviour	3
			Findings	

10.	3 What have we learned?	. 10.33
11 Sea	arch and matching and self-insurance	11.0
11.	1 Why should we care?	. 11.0
11.	2 The equations behind Lorenz and Gini [background]	. 11.4
11.	3 The structure	. 11.7
	11.3.1 Labour income	
	11.3.2 The individual	. 11.8
	11.3.3 Optimal behaviour	. 11.12
11.	4 Consumption and wealth dynamics	
	11.4.1 Reduced form and phase diagram	
	11.4.2 Equilibrium	
11.	5 Quantitative findings	
	6 What have we learned?	
12 Ex	ercises on unemployment	12.0
12.	1 Exercises	. 12.0
	12.1.1 The matching model	. 12.0
	12.1.2 Reservation productivity	
	12.1.3 Pure search model	
	12.1.4 Non-stationary search	12.2

	12.1.5 Evolution of the belief	12.2
	12.1.6 Optimal precautionary saving	12.2
ш	Conclusion	13.0
13 W	What did we learn from the individual fields?	13.0
13	3.1 Economic growth	13.0
13	3.2 Unemployment	13.1

References

- Aghion, P., and P. Howitt (1992): "A Model of Growth Through Creative Destruction," Econometrica, 60, 323–351.
- Aghion, P., and P. Howitt (1994): "Growth and Unemployment," Review of Economic Studies, 61(3), 477–494.
- Aghion, P., and P. Howitt (1998): Endogenous Growth Theory. MIT Press, Cambridge, Massachusetts.
- Barro, R. J., and X. S. i Martin (2004): Economic Growth, 2nd. ed. MIT Press.
- Benhabib, J., and A. Bisin (2017): "Skewed Wealth Distributions: Theory and Empirics," Journal of Economic Literature, forthcoming, 1–47.
- Benhabib, J., A. Bisin, and M. Luo (2017): "Earnings Inequality and Other Determinants of Wealth Inequality," American Economic Review: Papers & Proceedings, 107(5), 593–597.
- Benhabib, J., A. Bisin, and S. Zhu (2011): "The Distribution of Wealth and Fiscal Policy in Economies with Finitely Lived Agents," Econometrica, 79(1), 123–157.
- Cahuc, P., and A. Zylberberg (2004): Labor Economics. The MIT Press.

- Cass, D. (1965): "Optimum Growth in an Aggregative Model of Capital Accumulation," Review of Economic Studies, 32(2), 233–240.
- Castaneda, A., J. Diaz-Gimenez, and J.-V. Rios-Rull (2003): "Accounting for the U.S. Earnings and Wealth Inequality," Journal of Political Economy, 111, 818–857.
- Cyert, R., and M. DeGroot (1970): "Bayesian Analysis and Duopoly Theory," Journal of Political Economy, 78(5), 1168–1184.
- DeGroot, M. H. (1970): Optimal statistical decisions. McGraw-Hill.
- Dixit, A., and J. Stiglitz (1977): "Monopolistic competition and optimum product diversity," American Economic Review, 67, 297–308.
- Gabaix, X., J.-M. Lasry, P.-L. Lions, and B. Moll (2015): "The Dynamics of Inequality," Working Paper Princeton University.
- Galor, O. (2005): From Stagnation to Growth: Unified Growth Theorypp. 171–293. Handbook of Economic Growth, Volume 1A., Philippe Aghion and Steven N. Durlauf,eds. (Elsevier).

- Grossman, G. M., and E. Helpman (1991): Innovation and Growth in the Global Economy. The MIT Press, Cambridge, Massachusetts.
- Helpman, E., and O. Itskhoki (2010): "Labor Market Rigidities, Trade and Unemployment," Review of Economic Studies, 77(3), 1100–1137.
- Helpman, E., O. Itskhoki, and S. Redding (2010): "Inequality and unemployment in a global economy," Econometrica, 78(4), 1239–1283.
- Jones, C. I. (1995a): "R&D-Based Models of Economic Growth," Journal of Political Economy, 103(3), 759–784.
- ———— (1995b): "Time Series Tests of Endogenous Growth Models," Quarterly Journal of Economics, 110(2), 495–525.
- Kaymak, B., and M. Poschke (2016): "The evolution of wealth inequality over half a century: The role of taxes, transfers and technology," Journal of Monetary Economics, 77, 1–25.
- Keller, G., and S. Rady (2010): "Strategic experimentation with Poisson bandits," Theoretical Economics, 5(2), 275–311.
- Keller, G., S. Rady, and M. Cripps (2005): "Strategic Experimentation with Exponential Bandits," Econometrica, 73(1), 39–68.

- Khieu, H., and K. Wälde (2018): "Capital Income Risk and the Dynamics of the Wealth Distribution," mimeo Johannes Gutenberg University Mainz.
- Kihlstrom, R. E. (1974a): "A Bayesian Model of Demand for Information About Product Quality.," International Economic Review, 15(1), 99 118.
- ———— (1974b): "A General Theory of Demand for Information about Product Quality.," Journal of Economic Theory, 8(4), 413 439.
- Koopmans, T. (1965): On the Concept of Optimal Economic Growthpp. 225–287. The Economic Approach to Development Planning. Chicago: Rand McNally.
- Launov, A., and K. Wälde (2013): "Estimating Incentive and Welfare Effects of Non-Stationary Unemployment Benefits," International Economic Review, 54, 1159–1198.
- ——— (2015): "The Employment Effect of Reforming a Public Employment Agency," available at www.waelde.com/pub.
- ——— (2016): "The Employment Effect of Reforming a Public Employment Agency," European Economic Review, 84, 140–164.
- Mortensen, D. T. (1977): "Unemployment Insurance and Job Search Decisions," Industrial and Labor Relations Review, 30, 505–517.

- Pissarides, C. A. (1985): "Short-run Equilibrium Dynamics of Unemployment Vacancies, and Real Wages," American Economic Review, 75, 676–90.
- Pissarides, C. A. (2000): Equilibrium Unemployment Theory. MIT Press, Cambridge, Massachusetts.
- Rogerson, R., R. Shimer, and R. Wright (2005): "Search-Theoretic Models of the Labor Market: A Survey," Journal of Economic Literature, 43, 959–988.
- Romer, P. M. (1986): "Increasing Returns and Long-Run Growth," Journal of Political Economy, 94, 1002–1037.
- ——— (1990): "Endogenous Technological Change," Journal of Political Economy, 98, S71–S102.
- Ross, S. M. (1993): Introduction to Probability Models, 5th edition. Academic Press, San Diego.
- ——— (1996): Stochastic processes, 2nd edition. Academic Press, San Diego.
- Rothschild, M. (1974): "Searching for the Lowest Price When the Distribution of Prices Is Unknown," Journal of Political Economy, 82(4), 689–711.

- Segerstrom, P. S. (1998): "Endogenous Growth without Scale Effects," American Economic Review, 88, 1290–1310.
- Sennewald, K. (2007): "Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility," Journal of Economic Dynamics and Control, 31, 1106–1131.
- Sennewald, K., and K. Wälde (2006): "It 's Lemma and the Bellman Equation for Poisson Processes: An Applied View," Journal of Economics, 89(1), 1–36.
- Shell, K. (1966): "Toward A Theory of Inventive Activity and Capital Accumulation," American Economic Review, 56(1/2), 62-68.
- Shimer, R. (2005): "The Cyclical Behavior of Equilibrium Unemployment and Vacancies," American Economic Review, 95, 25–49.
- Solow, R. M. (1956): "A Contribution to the Theory of Economic Growth," Quarterly Journal of Economics, 70, 65–94.
- Stigler, G. (1961): "The Economics of Information," Journal of Political Economy, 69(3), 213–225.
- Tonks, I. (1983): "Bayesian learning and the optimal investment decision of the firm," Economic Journal, 93, 87–98.

- van den Berg, G. (1990): "Nonstationarity in Job Search Theory," Review of Economic Studies, 57(2), 255–277.
- Wackerly, D., W. Mendenhall, and R. Scheaffer (2008): Mathematical Statistics with Applications, 7th ed. Thomson Brooks/Cole.
- Wälde, K. (1999a): "A Model of Creative Destruction with Undiversifiable Risk and Optimising Households," Economic Journal, 109, C156–C171.
- ——— (1999b): "Optimal Saving under Poisson Uncertainty," Journal of Economic Theory, 87, 194–217.
- ——— (2011): "Production technologies in stochastic continuous time models," Journal of Economic Dynamics and Control, 35, 616–622.
- ——— (2012): Applied Intertemporal Optimization. Know Thyself Academic Publishers, available at www.waelde.com/KTAP.
- ——— (2016): "Pareto-Improving Redistribution of Wealth The Case of the NLSY 1979 Cohort," mimeo Johannes Gutenberg University Mainz.
- Zwillinger, D., and S. Kokoska (2000): Standard probability and statistics tables and formulae. Chapman & Hall/CRC.