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ABSTRACT

Poverty is a persistent problem of any society. Using a relative poverty line of 50% of the

median disposable income, the average relative poverty share for the 27 member states of

the Organisation for Economic Co-operation and Development (OECD) was 11.1% in the

late 2000s. Here, the U.S. had the fourth highest rate of 17.3% (OECD, 2011). Causes

for poverty and its extend are multifaceted and vary in between countries. Nevertheless,

recent studies as for example Oxley et al. (2000) stress the impact of tax and transfer

systems on poverty.

The objective of this thesis is to analyse the link between public and private provisions

to poverty. At first, a new quantitative method, the so-called Fokker-Planck equation,

will be introduced, which allows the analysis of distributional aspects of stochastic dy-

namic models. Subsequently, using the National Longitudinal Survey of Youth 1979, the

evolution of wealth-poverty in the U.S. will be analysed. Therefore, a numerical solution

of a simple labour market model, motivated by Bayer and Wälde (2013), is used. A

calibrated version of this model partially matches the poverty evolution over 22 years.

Results show that in such a setup the reduction of unemployment benefits can lead to

less poverty in terms of poverty gap and head count.

In jeder Gesellschaft stellt Armut ein dauerhaftes Problem dar. Definiert man die Armuts-

grenze als 50% des verfügbaren Einkommens des Medians, lag in den späten 2000ern die

durchschnittliche relative Armutsquote aller 27 Mitgliedstaaten der Organisation für wirt-

schaftliche Zusammenarbeit und Entwicklung (OECD) bei 11,1%. Hierbei lag die Quote

in den USA bei 17,3%, dem vierthöchsten Wert unter allen OECD-Staaten (OECD, 2011).

Ursachen und Ausmaße von Armut sind sehr vielfältig und unterschiedlich für verschie-

dene Länder. Grundsätzlich, wie z.B. beschrieben in Oxley et al. (2000), ist der Einfluss

von Steuersystemen und Sozialversicherungen auf das Ausmaß von Armut bekannt.

Ziel dieser Arbeit ist die genauere Analyse des Zusammenhangs von öffentlichen und

privaten Vorsorgemaßnahmen auf die Armutsverhältnisse. Hierzu wird zunächst eine neue

quantitative Methode, die sogenannte Fokker-Planck Gleichung, eingeführt. Diese Glei-

chung erlaubt die Analyse von Verteilungen in allgemeinen stochastischen und dyna-

mischen Modellen. Anschließend wird die Entwicklung der amerikanischen Vermögens-

verteilung, beschrieben im ”National Longitudinal Survey of Youth 1979”, analysiert.

Hierbei wird ein einfaches Arbeitsmarktmodell, basierend auf Bayer und Wälde (2013),

numerisch gelöst und bezüglich der Armutsentwicklung in den USA kalibriert. Analy-

sen zeigen, dass in diesem Modellrahmen eine Minderung der Arbeitslosenhilfen zu einer

Reduktion der Armut (gemessen anhand der Armutsquote und der Armutslücke) führt.
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CHAPTER 5

Description of Distributional
Properties using the Method of

Characteristics

CR

by Tobias Nagel†

5.1 Introduction
Motivation - Dynamic frameworks are used in economic growth models, labour market

models and many more. The dynamics are commonly modelled with the help of stochastic

processes. In order to describe those processes in terms of distributional properties

Fokker-Planck equations (FPEs) can be used. The relationship of stochastic processes

via stochastic differential equations and FPEs is well known (cf. e.g. Gardiner (1997)

or chapter 2 for a detailed discussion). In basic mathematical terms, the FPE is a

differential equation. For jump-diffusion processes this can be either a partial differential

equation or a delay differential equation. In both cases, FPEs describe the evolution

of the probability density function of the random variable described by the stochastic

differential equation.

We will focus on a model involving two Poisson processes that can be used to describe

a simple labour market model with precautionary savings in spirit of Aiyagari (1994).

This setup is used for example by Bayer and Wälde (2013) to show the existence and

uniqueness of individual optimal behaviour together with a formal description of the

wealth distribution by FPEs. Solving those equations is the next natural step for a

better understanding of the dynamics of wealth and related concepts as for example

poverty in a society described by such a framework. Nevertheless this is a non-trivial

task and cannot be done analytically. Therefore, we will look into possible numerical

solution methods.

Research question - Using FPEs to describe distributional properties leads to the prob-

lem of solving differential equations. Focusing on a basic continuous-time labour market

model with precautionary savings, how can we solve the arising system of differential

equations describing the probability density function of wealth? To answer this question,

we present the so-called ”method of characteristics” as a possible (numerical) solution

technique and two finite-difference methods. Further, we compare those solution meth-

†Mainz School of Management and Economics, University of Mainz, Jakob-Welder-Weg 4, 55131

Mainz, Germany. Email: nagelt@uni-mainz.de.
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84 Distributional Properties and the MoC

ods for two versions of the model with different instantaneous utility function. Doing

this, we discuss advantages and disadvantages of each method.

Setup - We focus on the individual level in a labour market with stochastic job separa-

tion and job finding. An individual faces constant payments while employed and in the

case of a job loss constant unemployment benefits will be paid. The only possible way to

insure against the loss in income during unemployment is the investment in a riskless as-

set. This setup is in-line with Aiyagari (1994) and in its continuous-time version was first

used by Bayer and Wälde (2013). We will distinguish two cases of individual instanta-

neous utility: constant absolute risk aversion (CARA) and constant relative risk aversion

(CRRA). Both forms are widely used in economic literature (see discussion below), but

the functional form does influence the complexity of the resulting FPEs. In both cases,

we have to solve a coupled system of linear first-order partial differential equations in

two independent variables. In the case of CARA utility, we get only constant coefficients

allowing for a further analytical analysis, whereas the CRRA-case can only be analysed

by numerical means.

In general, one possible solution method for this type of partial differential equations

is the method of characteristics (MoC). This method reduces the system of partial dif-

ferential equations into a family of ordinary differential equations. Those are, a priori,

easier to solve. As known in literature (cf. e.g. DuChateau and Zachmann, 2002) the

method of characteristics can provide an explicit solution for a homogeneous constant

coefficient system of hyperbolic partial differential equations. In the case of inhomoge-

neous systems or systems without constant coefficients this method fails to provide an

exact solution. Nevertheless, it is possible to apply this method numerically. Addition-

ally, the new family of ordinary differential equations do reveal additional insights to the

underlying model.

To provide alternatives to the MoC, we discuss the Lax-Friedrich method and the

Crank-Nicolson method. Both are finite-difference methods, i.e. they approximate the

partial derivatives involved by difference quotients of certain types and are by definition

not able to provide an explicit solution.

Findings - As both our setups deal with hyperbolic PDEs that do not have an analytical

closed form solution, we do rely on numerical methods. Both, the MoC and the finite

difference methods used in this work are well known concepts in numerical mathematics,

that are applied for this class of problem. Due to the additional insights provided by the

method of characteristics, we prefer this approach to compute solutions in both setups.

One direct observation that can be made using the MoC, is the influence of unemployed

and employed individuals to the wealth distribution over time. Both groups of the labour

market are responsible for the widening of the area of support of the wealth distribution,

but the unemployed are responsible for a downward motion of the lower bound and

equivalently the upper bound is influenced by employed individuals. This fact is not

surprising, but we are able to explain this phenomena in more detail, compared to the

other methods used.

Using the methods presented in this paper, we can compute the evolution of the wealth

distribution at any point in time and especially for a large time-span. This presentation

of a stable solution technique strengthens the importance of the FPEs as a powerful

analysis tool for economic setups.
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Literature review - This chapter is motivated by the analysis of FPEs in an economic

context. Originating in mathematics and physics, there are many textbooks covering the

theory of those equations33. Examples are for example Risken (1989), Gardiner (1997)

or Stokey (2009). Chapter 2 of this thesis gives a detailed introduction to the concept of

FPEs and how they can be used for a variety of economic models.

Focusing on the solution methods used in this chapter, they can also be found in a wide

array of mathematical textbooks. One example is DuChateau and Zachmann (2002), who

describe ways to model physical systems and at the same time give an introduction of nu-

merical solution techniques. Abbott (1966) devotes a whole book on the MoC. Basically,

most textbook in numerical mathematics dealing with partial differential equations, will

at least include a short discussion on the method of characteristics and/or finite differ-

ence methods. Without any specific order and without being exhaustive, examples are

Hanke-Bourgeois (2002), Larsson and Thomee (2003), Pinchover and Rubinstein (2005),

or Quarteroni (2009).

Comparing the MoC and finite difference methods, ”the major strength of the numerical

method of characteristics [...[is]...] that it tracks information about the solution [...]

along approximations to the characteristics.” (DuChateau and Zachmann (2002), p. 449)

Further the authors mention that the MoC is better capable in dealing with solutions

containing sharp fronts. The disadvantage is the shift away from the original grid towards

an irregularly spaced grid. Here lies the advantage of the finite-difference methods, for

which the structure of the grid is never changed. Nevertheless we miss the information

that the solution holds along characteristics (cf. DuChateau and Zachmann, 2002).

As a major part of the application is concerned with different types of utility functions,

we want to motivate the choice of CARA and CRRA utility. Both types of utility

functions are widely used in many fields of economic literature. Focusing on labour

market literature, Shimer and Werning (2008) is one example where the influence of

both CARA and CRRA utility is analysed in terms of optimal unemployment insurance.

In line with our approach, Shimer and Werning use the CARA utility as benchmark for

the more complicated CRRA case. Acemoglu and Shimer (1999, 2000) also analyse the

effect of unemployment insurance in terms of labour productivity. In their earlier paper,

they assume CARA utility leading to a closed form solution. Using CRRA utility in

their later work, the authors rely on numerical computations. Other examples for CRRA

utility in a search and matching framework are for example Krusell et al. (2010), Bils et

al. (2009), or Hubbard et al. (1994, 1995), who analyse precautionary saving motives.

Outline - Section 5.2 establishes the economic framework for our analysis. We describe

how the wealth distribution over time can be described by FPEs for both CARA and

CRRA utility functions. Section 5.3 consists of two parts. We start with an overview over

the MoC together with required numerical methods to solve the characteristic equations.

The second part discusses finite difference methods and gives a short explanation of

the Lax-Friedrich and the Crank-Nicolson methods. Section 5.4 uses those methods to

solve the CARA case, before section 5.5 solves the CRRA case. As the CARA case is

assumed to be the easier case, we will start here with an analytical solution attempt. For

the CRRA case, we only give a numerical solution together with a comparative statics

analysis. The latter showing the influence of the model parameters on the evolution of

the wealth distribution. Finally, section 5.6 concludes.

33In some textbooks the term ”forward Kolmogorov equation” is used rather then FPEs.
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5.2 Economic framework
We will give a brief summary of the model, leading to the Fokker-Planck equations

(FPEs), whose numerical solution is the main focus of this work. For a detailed ex-

planation of the model we refer the reader to Bayer and Wälde (2013) [BW13 in what

follows].

5.2.1 Wealth density over time

We start with a standard individual intertemporal maximization problem, i.e. an indi-

vidual maximizes his/her individual intertemporal utility function given by

U (t) = E

∫ ∞
t

e−ρ[τ−t]u (c (τ)) dτ,

where in common notation r is the fixed interest rate, ρ is the time preference rate and

instantaneous utility of consumption is denoted by u (c (τ)). This maximization takes

place in an uncertain economy that can be summarized by the following two restrictions:

First, we have the standard budget constraint

da (t) = {ra (t) + z (t)− c (a (t) , z (t))} dt, (5.1)

where z (t) ∈ {w, b} denotes the income. The income itself follows the stochastic differ-

ential equation

dz (t) = (w − b) dqµ (t)− (w − b) dqs (t) (5.2)

and is therefore the second constraint of the maximization. For both, eq. (5.1) and

eq. (5.2), ”w” denotes the wage and ”b” represents unemployment benefits. As the income

is linked to the employment status, we also think of ”w” as indication for an employed

individual and ”b” indicates unemployment. Further, we assume that w > b(≥ 0), i.e.

employment is the preferred state as it yields a higher income. By qs(t) we denote the

homogeneous Poisson process modelling job separation with arrival rate s. Job finding is

described by the Poisson process qµ(t) with arrival rate µ. Additionally, we assume that

qs and qµ are mutually independent and that ∞ > µ, s > 0.

Let us give a more informal intuition of this model: As we have only two processes that

model job transition and those two processes are assumed to be mutually independent,

we do not allow for job-to-job transition. Individuals will either be unemployed and find

a job with arrival rate µ or in case of a working individual, he/she keeps a job until the

match is destroyed with arrival rate s. To explain eq. (5.2) in more detail, assume the

case of an employed individual: Then (5.2) simplifies to dz (t) = (−w + b) dqs as a job

offer will not arrive. Assume that at time t̃ a job loss takes place, i.e. dqs
(
t̃
)

= 1. In that

instance income and employment status changes by (−w + b), i.e. the individual looses

his/her wage&job and receives unemployment benefits instead (z
(
t̃
)

= w+(−w+b) = b).

The income after t̃ will only change once dqµ (t) = 1, i.e. the individual finds another

job. The only way an individual can self-insure against that reduction of income during

unemployment is a riskless asset a. This asset changes according to the budget constraint

(5.1) in two ways: Assets increase by the interest rate and the income but are reduced

by consumption. Depending on the size of those factors overall behaviour of assets or

wealth is controlled.
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The influence of the stochastic income implies that assets, a, is a random variable, too.

Hence, for each point in time we have to consider the discrete random variable z and the

continuous random variable a (here and in the following derivation we suppress the time

argument for readability). Going back to our research question, i.e. the distribution of

wealth, we introduce p(a, t) as the probability density function of wealth. This density

can be written according to (cf. BW13, eq. (18)):

p (a, t) = pw(a, t) + pb (a, t) , (5.3)

where pz (.) , z ∈ {w, b} will be called ”sub-densities” and can be described as a product

of a conditional density p (a, t|z) with the probability of being in state z. Using eqs. (5.1)-

(5.3) the FPEs can be computed following a standard derivation (cf. BW13 or chapter 2

of this thesis.). In matrix notation with vectors34

p̂ (a, t) =

(
pw(a, t)

pb (a, t)

)
and ĉ (a) =

(
cw(a)

cb (a)

)
the FPE reads

∂

∂t
p̂+B

∂

∂a
p̂ = Cp̂, (5.4)

where

B =

(
ra+ w − cw (a) 0

0 ra+ b− cb (a)

)
,

C =

(
∂
∂a
cw (a)− r − s µ

s ∂
∂a
cb (a)− r − µ

)
,

and ∂
∂t
p̂ =

(
∂
∂t
pw(a, t), ∂

∂t
pb (a, t)

)T
. Hence, we have to solve a coupled first order linear

system of partial differential equations in two independent variables. The instantaneous

utility function has not been used up to this point, but it can now be used to look closer

at B and C or to be more precise at ĉ (a) (this will be done in the following section).

Finally, it remains to be stated that in order to compute a unique solution to a first

order PDE some initial conditions are required. Therefore we assume that values p̂ (a, 0)

are known.

5.2.2 Two types of risk aversion

Any solution to eq. (5.4) must take optimal consumption into consideration. In order

to determine this optimal policy rule, we need to use the maximized Bellman equation.

This equation depends on the assumed form of instantaneous utility u (·). As discussed

in the introduction, we focus on two types: constant absolute risk aversion (CARA) and

constant relative risk aversion (CRRA). To ensure the existence of a unique solution for

the optimal consumption path in the CRRA case we require one additional assumption,

i.e. 0 < r < ρ (cf. BW13). This assumption is assumed to hold for CARA utility as well.

34We introduce the abbreviation cz (a) for the function c (a (t) , z (t)) , z ∈ {w, b} to reduce notation.
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Constant absolute risk aversion

We start with a CARA utility function, i.e.

u (c) = −e−γc,

where γ describes the risk aversion. In this case, we know that the optimal consumption

of an individual is linear (cf. e.g. Shimer and Werning, 2007 & 2008). Assuming the

functional form of

cz(a) = ra+ z +mz, z ∈ {w, b} (5.5)

with mw,mb ∈ R we can use the derivative of the maximized Bellman equation35 to

determine a non-linear system to determine those constants. This system reads

r [1 +mwγ]− s− ρ+ seγ[w−b+mw−mb] = 0, (5.6)

r [1 +mbγ]− µ− ρ+ µe−γ[w−b+mw−mb] = 0,

and numerical computations have shown that, for realistic parameter values for r, γ, µ, s, w

and b, the consumption specific parameters are mw < 0 and mb > 0.

Using optimal consumption (5.5) together with the budget constraint (5.1) shows that

employed individuals increase their wealth. For unemployed individuals the opposite is

true and individual assets will decrease. Hence, this optimal consumption can resemble

a precautionary savings effect as desired by economic intuition.

Going back to the FPE (5.4), optimal consumption due to CARA preferences simplifies

matrices B and C according to

B =

(
−mw 0

0 −mb

)
and C =

(
−s µ

s −µ

)
.

This is still a coupled first order linear system of partial differential equations in two inde-

pendent variables as C is a full matrix. Nevertheless, in comparison to the initial system,

matrices B and C are constant, allowing a further analytical analysis (cf. section 5.4).

Constant relative risk aversion

Instantaneous utility reflects CRRA with risk aversion parameter σ, if

u(c) =

{
c1−σ−1

1−σ , σ > 0, σ 6= 1,

ln(c), σ = 1.
(5.7)

In the case of CRRA utility, optimal consumption paths for employed and unemployed

individuals do not have a closed-form solution. As shown in chapter 4 of this thesis,

optimal policy rules can be determined using a numerical solution to the Keynes-Ramsey

rule. According to the numerical results as well as results proven in BW13, we know the

following properties. First, optimal consumption is a concave function for both employ-

ment states. Second, for any given wealth level consumption of an employed individual is

larger than consumption of an unemployed individual. Finally, the precautionary savings

35For a derivation of the maximized Bellman equation in this setup see BW13 or chapter 4 of this

thesis.
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motive does still occur as employed individuals will increase their wealth and unemployed

individuals will decrease their wealth (given that we are in the interval [−b/r, a∗w] as de-

scribed in chapter 4).

In terms of the FPE (5.4), we cannot simplify matrices B and C any further.

5.3 Numerical concepts

Having established the basic problem, this section gives a brief overview of possible

numerical solution methods. Before we start with the actual methods, we introduce

some notation. We will approximate the exact solutions of p (a, t) for a two-dimensional

grid. Therefore, we define for a ∈ [aMin, aMax] and t ∈ [0, T ] the following entities36:

Let ∆t = [t1, ..., tn] be a equidistant grid of n knots where t1 = 0, tn = T . Addi-

tionally we define ht = tj+1 − tj. In a similar fashion we introduce an equidistant grid

∆a = [a1, ..., am], with ha = ai+1 − ai (where a1 = aMin and am = aMax). To shorten

notation for any evaluation of the density and sub-densities of wealth, we also introduce

pzi,j = pz (ai(tj), tj) , z ∈ {w, b} .
As a next step we introduce the MoC, followed by a short discussion of the Lax-

Friedrich method and the Crank-Nicolson method. The latter two being examples of

finite-difference methods. Finally, we conclude with a comparison of both methods.

5.3.1 The method of characteristics

Solving a PDE by the MoC involves locating a curve along which the solution follows

an ODE. Such a curve is called ”characteristic curve” or simply a ”characteristic”, what

explains the name for the method itself. A detailed discussion of this method in the

context of PDEs can be found in many mathematical textbooks as for example Abbott

(1966), DuChateau and Zachmann (2002) or Larsson and Thomée (2003). The main

advantage of the MoC is the knowledge of the characteristics and the hereby gained

additional information, that can give additional insight in the economic mechanisms.

The following derivation is taken from Mattheij, Rienstra and ten Thije Boonkkamp

(2005), ch. 2.2. As system (5.4) is already a very special case and as we would like to

establish the MoC in more detail, we will give a derivation for the general equation

G
∂p

∂t
+ H

∂p

∂a
= c (a,p) , (5.8)

where p (x, t) = (p1 (x, t) , p2 (x, t))T and G,H ∈ R2×2 are non-singular37.

The first task is to ”de-couple” the partial derivatives of p1 and p2, i.e. we try to

transform matrices G and H. Therefore, we need a transformation matrix S such that

S−1
(
HG−1S

)
= Λ,

36In order to keep this introduction as general as possible we use aMin, aMax. Nevertheless, due to

economic reasoning, we know that aMin = − b
r , the natural borrowing limit. Also aMax is given by the

endogeneous upper wealth limit a∗w (cf. chapter 4).
37We choose a two dimensional system in accordance to our original problem. This method does hold

for any dimension.
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where Λ is a diagonal matrix with entries λ1, λ2. Given the existence of S, we can define

the characteristic variable as

p̃ (x, t) ≡ S−1Gp (x, t) .

Multiplying the initial PDE (5.8) by S−1 and using the characteristic variable together

with Λ we end up with the the de-coupled system

∂p̃

∂t
+ Λ

∂p̃

∂x
= c̃ = S−1c.

Each row of this matrix equation induces a characteristic corresponding to the the eigen-

value and eigenvector of HG−1. The characteristic equations read

da

dt
= λk,

dp̃k
dt

= c̃k (k = 1, 2), (5.9)

where the solution of dp̃k
dt

= c̃k holds along the solution of da
dt

= λk. To solve those

equations we need additional information, i.e. boundary and/or initial values depending

on the definition of a.

A first example

To demonstrate the MoC we will solve the following initial value problem:

∂

∂t
p (a, t) + α

∂

∂a
p (a, t) = 0, a ∈ R, t ≥ 0, α ∈ N,

p (a, 0) = ea, ∀a ∈ R,

which is an advection equation describing a wave propagation.

Following the above derivation we end up with the characteristic equations

da

dt
= α, (5.10a)

dp

dt
= 0. (5.10b)

How can we use those equations to obtain a solution to our initial problem? From

eq. (5.10b) we see that the solution p (a, t) is constant along a = αt + a0 (a0 = const),

which is the solution of the characteristic (5.10a) Using the initial condition yields that

the solution to the initial problem is given by

p (a, t) = ea−αt,

as for t = 0 the characteristic intersects the x-axis at a0.

The solution can easily be verified: Using the chain rule yields

∂

∂t
p (a, t) = −αea−αt,

∂

∂a
p (a, t) = ea−αt,

and hence we get −αea−αt+α ·ea−αt = 0 as required. Also the initial condition is fulfilled

as p(a, 0) = ea−α·0 = ea.
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Solving the MoC-system

Looking back at the first example, we could compute a closed-form solution to the advec-

tion equation. Depending on the form of the characteristic equations this is not possible

in every case, as it is not always possible to find closed form solutions for the ODEs given

in eq. (5.9). Especially in our case of CRRA utility we will rely on solving those equations

by numerical methods. Dealing with ODEs, we can access a broad range of numerical

methods to solve such a system. As our analysis has shown, we can use fairly simple

methods from the Runge-Kutta family to solve the characteristic equations. This section

gives a brief overview of two methods that will be used in our analysis in sections 5.4

and 5.5.

We start with the explicit Euler method, which can be described as the easiest method

in terms of computational effort. But as this method has shortcomings in terms of

accuracy we present the Runge-Kutta method or classical Runge-Kutta method, which

is also an explicit method but of fourth-order38. For a detailed description of the following

solution techniques we refer the reader to any preferred textbook on numerical methods

for ODEs as for example Hanke-Bourgeois (2002) or Judd (1998).

The explicit Euler method (eEuler)

To explain this method, we assume that we want to solve the general initial value problem

y′ = f(t, y), y(0) = y0. The basic idea of the eEuler is to use the slope given by the

ODE, i.e. f(t, y), to compute the value of the function at a later point in time. This

method relies on the assumption, that after a short time-interval the tangent is still a

good approximation of the original curve. Hence, we start in y0 and move forward with

the initial slope f(0, y0). Computation of the new value involves only the information of

the previous step, hence this method is called explicit.

In mathematical notation one step of the eEuler is given by

y(tj+1) = y (tj) + htf (tj, y (tj))

(cf. Hanke-Bourgeois, 2002).

The Runge-Kutta method (RK4):

Additionally, we will use the Runge-Kutta method, which is also known as ”classical

Runge-Kutta method” or ”RK4”. In comparison to eEuler, where only the slope of the

current time f (tj, y (tj)) is used, RK4 uses a weighted average of four different values

given by the direction field in the interval [tj, tj+1]. One step of RK4 is defined as.

y(tj+1) = y (tj) + ht

[
1

6
k1 +

1

3
k2 +

1

3
k3

1

6
k4

]
,

where k1 = f (tj, y (tj)). k2 is the slope computed with half an explicit Euler step using

k1. In order to compute k3, we perform half an explicit Euler step using k2. The slope

determined with that step is k3. Finally, the slope computed with a whole explicit Euler

step using k3 is defined as k4 (cf. Hanke-Bourgeois, 2002 - ex. 76.7).

This method is a special case of the family of Runge-Kutta methods defined as

yi+1 = yi + h

s∑
j=1

bjf(ti + cjh, ηj),

38Loosely speaking, a method is called of n-th order if the error term is O
(
hn+1

)
, where h is the

distance between two grid points (cf. Hanke-Bourgeois, 2002).



92 Distributional Properties and the MoC

with an appropriate choice of knots cj, weights bj and the number of stages s (cf. Hanke-

Bourgeois, 2002)39.

Of course, we could also use built-in methods of a numerical computing environment.

As all computations are performed using Matlab40, one available routine is for example

”ode45”. This method is ”based on an explicit Runge-Kutta (4,5) formula, the Dormand-

Prince pair” (cf. Matlab - HelpFile). Using this function has a major drawback as we

noticed in the process of testing our solution method. The routine ode45 is designed to

compute the solution of an ODE system in a large time interval. In our case, we want

to solve the ODE just for a small period of time (cf. section 5.4). This leads to a huge

amount of function calls, as we need to use ode45 at each tj and this has to be done for

each point in ∆a. Consequently, using ode45 or any other built-in method needs a high

amount of computation time once ht and ha is reasonable small. Nevertheless, ode45 is

of higher order as eEuler and RK4 and could result in a more accurate solution for some

examples.

5.3.2 Finite difference methods as alternative concepts

In order to demonstrate possible alternatives, this section discusses two finite-difference

methods. The basic idea for this type of numerical solution is to approximate the partial

derivatives occurring in eq. (5.4) using difference quotients. Using for example the partial

derivative with respect to wealth a, such a quotient reads

∂

∂a
p (a, t) = lim

h→0

p(a+ h, t)− p (a, t)

h
.

Once we do not take the limit but the value of the difference quotient for a fixed h, we

can use this as an approximation for the partial derivative itself. The so-called truncation

error, i.e. the error we inevitably make by using an approximation instead of the exact

value, can be determined using Taylor’s theorem. Taking the Taylor approximation of a

real valued function f(x) around some point a, we know that f(x) =
∑

n f
(n)(a) (x−a)n

n!
.

Hence the first-order Taylor approximation gives an approximation of the first derivative,

i.e. f ′(a) ≈ f(x)−f(a)
(x−a)

and the truncation error can be determined using the higher order

terms.

To determine a unique solution in a finite space we need initial as well as boundary

conditions, i.e.

pz(a1, t) = cz1(t),

pz(am, t) = czm(t), (5.11)

pz(a, 0) = cz0(a),

with cz1, c
z
m, c

z
0 ∈ C∞ (R), z ∈ {w, b} . In our formulation of the original problem, we state

only initial conditions. The additional boundary conditions are sometimes called ”nu-

merical boundary conditions”, as those are only required to determine a unique solution

with the help of the numerical finite difference methods (cf. Strikwerda (2004), p.85).

39Taking this definition, eEuler is also a Runge-Kutta methods. In fact, it is the simplest method of

order 1.
40MATLAB v.7.12.0.635 (R2011a), 32-bit, The MathWorks, Inc., Natick, Massachusetts, United

States.
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Lax-Friedrich method

The Lax-Friedrich method applies the ”forward in time, centered in space (FTCS)”-

method to approximate the partial derivatives (cf. DuChateau and Zachmann, 2002).

The approximations used are

∂

∂t
pzi,j+1 =

pzi,j+1 − 1
2

(
pzi−1,j + pzi+1,j

)
ht

, (5.12a)

∂

∂a
pzi,j+1 =

1

2ha

(
pzi+1,j − pzi−1,j

)
, (5.12b)

with z ∈ {w, b} , i = 2, ...,m− 1 and j = 1, ..., n− 1.

How can this approximation be used for our problem? Suppose we have finished our

computation of pw (.) and pb (.) for time tj for all points in ∆a and we want to determine

values for the grid point ai at the next point in time tj+1. Starting with the first row of

the matrix equation eq. (5.4) we have

∂

∂t
pwi,j+1 +B11

∂

∂a
pwi,j+1 = C11p

w
i,j+1 + C12p

b
i,j+1,

where we used the definitions B := {Bkl} , C := {Ckl} . Using eq. (5.12) yields

pwi,j+1 −
1

2

(
pwi+1,j + pwi−1,j

)
+B11

ht
2ha

(
pwi+1,j − pwi−1,j

)
= ht

(
C11p

w
i,j+1 + C12p

b
i,j+1

)
.

Rewriting this in terms of pzi,j+1, the values we want to compute, we get

(
1− htC11 −htC12

)(pwi,j+1

pbi,j+1

)
=

1

2

(
pwi+1,j + pwi−1,j

)
−B11

ht
2ha

(
pwi+1,j − pwi−1,j

)
.

Here all values occurring on the right hand side are known (as all values needed are

evaluations at time tj). The same holds if we look at the second equation of eq. (5.4). In

summary, we get

(
1− htC11 −htC12

−htC21 1− htC22

)(
pwi,j+1

pbi,j+1

)
=

(
1
2

(
pwi+1,j + pwi−1,j

)
−B11

ht
2ha

(
pwi+1,j − pwi−1,j

)
1
2

(
pbi+1,j + pbi−1,j

)
−B22

ht
2ha

(
pbi+1,j − pbi−1,j

)) .
This is a linear system of two equations for two unknowns pwi,j+1, p

b
i,j+1), yielding one

unique solution if and only if 1− ht (C11 − C22) + h2
t (C11C22 − C12C21) 6= 0.

Here, we have to solve a linear system of equations for pzi,j+1 instead of having a explicit

formula for those variables. This is due to the fact that we deal with a coupled system.

In total, we have to solve m− 2 such systems, i.e. for each grid point of ∆a, in order to

proceed from tj to tj+1. As those systems are only two dimensional this is a feasible task

and slows the computation in an acceptable way41. Note that due to the FTCS we can

compute only values for the interval [a2, am−1]. Values for a1 and am have to be taken

from the boundary conditions cz1(t) and czm(t).

Concerning the stability of this method, we know a necessary condition, i.e. the Courant-

Friedrich-Levy (CFL) condition. Basically, the CFL condition gives a restriction on the

41Tests showed that solving (m−2)-times a two-dimensional systems is faster than solving a (2m−4)-

dimensional system once.
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relation of ha and ht. For a system with constant coefficients (i.e. matrix B in eq. (5.4)

needs to be constant) the CFL condition is∣∣∣∣λi htha
∣∣∣∣ ≤ 1,

where λi are the (real) Eigenvalues of matrix B (cf. DuChateau and Zachmann, 2002).

Note that in the case of a diagonal matrix λi ≡ Bii.

Crank-Nicolson method

This is an example of an implicit method and hence is unconditionally stable. Fur-

thermore the local truncation error is in the order of O(h2
t + h2

a) (cf. DuChateau and

Zachmann (2002), table 9.2.2).

The used approximations are (for z ∈ {w, b})

∂

∂a
pzi,j+1 =

1

2

[
pzi+1,j+1 − pzi−1,j+1

2ha
+
pzi+1,j − pzi−1,j

2ha

]
=

1

4ha

[
pzi+1,j+1 − pzi−1,j+1 + pzi+1,j − pzi−1,j

]
,

∂

∂t
pzi,j+1 =

pzi,j+1 − pzi,j
ht

,

pzi,j+1 =
1

2

(
pzi,j+1 + pzi,j

)
.

To demonstrate the application of the Crank-Nicolson method, we assume that we know

the values of pwi,j, p
b
i,j ∀i. The next step is the computation of values pi,j+1, ∀i. Introducing

a vector containing the unknowns, i.e.

p̂i,j+1 :=
[
pw2,j+1, ..., p

w
m−1,j+1, p

b
2,j+1, ..., p

b
m−1,j+1

]
,

we end up with the following system that needs to be solved:

L · p̂i,j+1 = z.

Here L ∈ R2(m−2)×2(m−2) is a band matrix42 allowing to use optimized algorithms for

spare matrices.

5.3.3 Summary of numerical methods

Having introduced both the MoC and two finite difference methods, it becomes obvious

that the MoC has some appealing advantages. Firstly, the MoC is not a pure numerical

method as it can be used to compute a closed form solution in some cases. If this

is not possible, we can still use the characteristic equations together with numerical

solution methods for ODEs to determine a numerical solution. Here, basic methods that

are either readily available or that can easily be implemented are suitable to solve the

occurring ODEs. Finite difference methods are by definition numerical methods and can

42For an explicit formula of L and z and a detailed derivation we refer the reader to appendix 5.7.2.
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never lead to a closed form solution. From our point of view the complexity in terms of

computational and implementation effort is comparable for both solution methods and

does not favour any of the methods.

The final advantage of the MoC is the additional insight, that can be gained from the

characteristic equations itself. For our two examples we are able to explain movements

in the wealth distribution due to the precautionary savings motive as will be shown in

the next two sections.

In summary, the MoC is a promising method for the analysis of distributional properties

as described by FPEs and hence will be discussed in more detail in the next two sections

for our model with CARA and CRRA utility.

5.4 Application I - CARA

The FPEs incorporating CARA utility are

PDEw ≡ ∂

∂t
pw (a, t)−mw

∂

∂a
pw (a, t) + spw (a, t)− µpb (a, t) = 0, (5.13a)

PDEb ≡ ∂

∂t
pb (a, t)−mb

∂

∂a
pb (a, t) + µpb (a, t)− spw (a, t) = 0, (5.13b)

where parameters mw, mb, s and µ are constant. Additionally, we assume that some

initial distribution p̂ (a, 0) =
(
pw (a, 0) , pb (a, 0)

)T ∀a is known.

5.4.1 The characteristic equations

Following section 5.3.1, we obtain the characteristic equations (cf. eq. (5.9)):

daC1

dt
= −mw, (5.14a)

daC2

dt
= −mb, (5.14b)

dp̃w

dt
= −sp̃w + µp̃b, (5.14c)

dp̃b

dt
= sp̃w − µp̃b. (5.14d)

It is important to note that eq. (5.14c) holds on the characteristic line (5.14a) only and

that eq. (5.14d) holds on the characteristic line (5.14b). In a slight abuse of notation, the

indices of aC1 and aC2 indicate the fact that those equations describe the characteristics

and not the grid points of ∆a.
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5.4.2 The analytical solution of the ODE system

This section will show that it is not possible to find a closed form solution to the FPEs

even for this ”easy” case of CARA utility, i.e. constant coefficients.

In order to get further insights into the properties of our solution, we now solve for the

characteristic paths. Solving the ODEs in eq. (5.14a) and eq. (5.14b) trivially gives

aC1 (t) = aC1 (0)−mwt, (5.15)

aC2 (t) = aC2 (0)−mbt. (5.16)

Starting with the solution to the inhomogeneous ODE (5.14c) with p̃w (0) as initial value,

the solution reads

p̃w (t) = e−stp̃w (0) + µ

∫ t

0

e−s[t−τ ]p̃b (τ) dτ.

Using the definition of p̃z (t) = pz (aC1 (t) , t) , z ∈ {w, b} we can rewrite this as

pw (aC11 (t) , t) = e−stpw (aC1 (0) , 0) + µ

∫ t

0

e−s[t−τ ]pb (aC1 (τ) , τ) dτ.

As this solution holds on the characteristic line (5.15) only, we need to substitute in an

appropriate way, i.e. by using

aC1 (0) = aC1 (t) +mwt,

aC1 (τ) = aC1 (0)−mwτ = aC1 (t)−mw [τ − t] .

Finally, we obtain that

pw (aC11 (t) , t) = e−stpw (aC1 (t) +mwt, 0) + µ

∫ t

0

e−s[t−τ ]pb (aC1 (t)−mw [τ − t] , τ) dτ.

Dropping the ”C1 (t)”-argument after a yields

pw (a, t) = e−stpw (a+mwt, 0) + µ

∫ t

0

e−s[t−τ ]pb (a−mw [τ − t] , τ) dτ. (5.17)

In other words, we have integrated eq. (5.14c) along the characteristic (5.14a).

We can treat p̃b (t) in a similar fashion. This time we have to consider, that eq. (5.14b)

is the characteristic corresponding to eq. (5.14d). Using the same algebraic steps as

above, we end up with

pb(a, t) = e−µtpb(a+mbt, 0) + s

∫ t

0

e−µ[t−τ ]pw(a−mb[τ − t], τ)dτ. (5.18)

To sum this up, the solution to the system (5.13) is given by the system of integral

eqs. (5.17) and (5.18). Looking at the first terms in (5.17) and (5.18) we can see that

initial functions pz (·, 0) , z ∈ {w, b} are “propagated trough time” in two ways: Firstly,

they change shape (but keep of course their functional form) as the mwt and the mbt

terms are visible in pz (·, 0) , z ∈ {w, b} . Secondly, they “lose importance” as s and µ are

positive and the exponential factor vanishes over time.
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Are (5.17) and (5.18) solutions to the PDE system?

The key ingredients to answer this question are the partial derivatives of pw and pb, i.e.

∂

∂a
pw(a, t) = e−st

∂pw

∂a
(a+mwt, 0) + µ

∫ t

0

e−s[t−τ ]∂p
b

∂a
(a−mw [τ − t] , τ) dτ

and43

∂

∂t
pw(a, t) =e−st

∂pw

∂a
(a+mwt, 0)mw − se−stpw(x+mwt, 0)

+ µ
∂

∂t

∫ t

0

e−s[t−τ ]pb (a−mw [τ − t] , τ) dτ

=e−st
(
∂pw

∂t
(a+mwt, 0)− spw(a+mwt, 0)

)
+ µpb(a, t)

+ µ

∫ t

0

e−s[t−τ ]

(
−spb (a−mw [τ − t] , τ) +mw

∂pb

∂t
(a−mw [τ − t] , τ)

)
dτ.

For pb we get similar results:

∂

∂a
pb(a, t) =e−µt

∂pb

∂a
(a+mbt, 0) + s

∫ t

0

e−µ[t−τ ]∂p
w

∂a
(a−mb [τ − t] , τ) dτ,

∂

∂t
pb(a, t) =e−µt

(
∂pb

∂t
(a+mbt, 0)− µpb(a+mbt, 0)

)
+ spw(a, t)

+ s

∫ t

0

e−µ[t−τ ]

(
−µpw (a−mb [τ − t] , τ) +mb

∂pw

∂t
(a−mb [τ − t] , τ)

)
dτ.

Now we are able to verify that integral equations (5.17) and (5.18) are indeed solutions to

(5.13a) and (5.13b). Demonstrating this exemplary for PDEw, we look at the following

factors in turns:

We begin with the examination of ∂
∂t
pw (a, t)− µpb (a, t), which simplifies to

∂

∂t
pw (a, t)− µpb (a, t) =e−st

(
∂pw

∂a
(a+mwt, 0)mw − spw(a+mwt, 0)

)

− sµ
∫ t

0

e−s[t−τ ]pb (a−mw [τ − t] , τ) dτ

+mwµ

∫ t

0

e−s[t−τ ]∂p
b

∂t
(a−mw [τ − t] , τ) dτ.

The remaining two factors incorporating our integral expression for pw and pb are

−mw
∂

∂a
pw (a, t) =

−mwe
−st∂p

w

∂a
(a+mwt, 0)−mwµ

∫ t

0

e−s[t−τ ]∂p
b

∂a
(a−mw [τ − t] , τ) dτ,

spw (a, t) = se−stpw (a+mwt, 0) + sµ

∫ t

0

e−s[t−τ ]pb (a−mw [τ − t] , τ) dτ.

43We use the chain rule to obtain: ∂
∂t (pw(a+mwt, 0)) = ∂pw

∂a (a+mwt, 0)mw + ∂pw

∂t (a+mwt, 0) · 0
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Building the sum over those three expression, eliminates all terms and we have proven

(5.13a). In order to proof that (5.13b) holds with (5.17) and (5.18), we can follow the

same line of argument.

Solving the system of integral equations (5.17) & (5.18)

As our goal is to find a closed form solution for p̂, we need to examine the system of

integral equations (5.17) and (5.18) closer. The limits of the integrals involved consists

of one fixed value 0 and the upper limit is t. Hence we can classify our system as a

Volterra-type equation of second-order.

It is well documented, that some classes of integral equations of the Volterra-type

can be solved using differentiation. According to Bronstein et al. (2001), ch. 11.4.2

this method works especially in cases of a polynomial kernel. In our case we have an

exponential kernel; nevertheless, we will try the ”derivation trick” anyhow.

Looking at the time derivative (as computed previously) shows that

∂

∂t
pw (a, t) = −se−stpw(a+mwt, 0) + e−st

∂pw

∂t
(a+mwt, 0) + µpb(x, t)

+ µ

∫ t

0

e−s[t−τ ]

(
−spb (a−mw [τ − t] , τ) +mw

∂pb

∂t
(a−mw [τ − t] , τ)

)
dτ

= −s
[
e−stpw(x+mwt, 0) + µ

∫ t

0

e−s[t−τ ]pb (x−mw [τ − t] , τ) dτ

]
+ e−st

∂pw

∂t
(a+mwt, 0) + µpb(a, t)

+mwµ

∫ t

0

e−s[t−τ ]∂p
b

∂t
(a−mw [τ − t] , τ) dτ.

Substituting the solution back in PDEw yields

∂

∂t
pw (a, t) =− spw (a, t) + e−st

∂pw

∂t
(a+mwt, 0) + µpb(x, t)

+mwµ

∫ t

0

e−s[t−τ ]∂p
b

∂t
(a−mw [τ − t] , τ) dτ.

Indeed, the simplification by derivation does not work in the our case. Hence we stop

here with the analytical analysis and switch to numerical computation methods.

5.4.3 The numerical solution

In the case of CARA utility, we know that mw < 0 and mb > 0 (cf. section 5.2.2). We

have already shown that the characteristics are straight lines. Those two facts yield that

once we focus on our grid ∆a, we have two movements: The solution of eq. (5.14c) is

valid along a line with positive slope, i.e. they ”move” from left to right. At the same

time, the solution to eq. (5.14d) is valid along a line with negative slope (cf. figure 5.1).
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Figure 5.1: Sketch of the area of interest, showing schematic characteristics - red indicates

characteristics linked to the state z = w, i.e. eq. (5.14a), and black lines are schematic drawings

of the solution to eq. (5.14b).

As said before, the idea of the MoC is that the solution of eq. (5.21c) holds along

eq. (5.21a). With reference to figure 5.1 we need to think of a third dimension containing

this solution. For example, suppose we start at pw(ai, t1). For our chosen time step ht,

the solution of eq. (5.14c) would hold ”above” the black dot on the corresponding black

line through ai. Hence we depart from our numerical grid points (ai, tj). In order to

get values of the solutions at the original grid points, we have to apply for example

interpolation methods.

As indicated in figure 5.1, we can interpolate the solution of pw in the interval

Iw = [a2 + δ, a7 + ε] , δ, ε > 0 and pb can be interpolated in Ib = [a1 − α, a6 − β],

α, β > 0. As we need information of both pw and pb to solve the system, we end up

with a decreasing area, i.e. Iw ∩ Ib ≡ [a3, a5] in our example drawn44. This large decrease

is a result of the coarse grid. In general, the area in dark grey shows the largest possible

area where we can solve our system relying on initial conditions only. One way to include

the whole interval [a1, am] at t2 would be extrapolation, but this is highly unreliable in

terms of required properties on p̂ as for example mass conservation.

A better way to solve this problem is to introduce boundary conditions, i.e.

pw(a1, t) = cw1 (t), (5.19a)

pb(am, t) = cbm(t). (5.19b)

For t2 those boundary conditions are indicated as a star in figure 5.1. Please note that

in order to end up with a well-posed problem, we are only allowed to define boundary

conditions at the edge where the corresponding characteristic enters the finite interval

(cf. Strikwerda, 2004)45. Once we have introduced those boundary conditions we can

44The true intersection set Iw ∩ Ib is larger, i.e. [a2 + δ, a6 − β] , but as we rely on the numerical grid

we have to choose grid points lying in the intersection set and hence we end up with [a3, a5] as written

above.
45A problem with initial as well as boundary conditions is called ”initial-boundary value problem” in
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interpolate the solutions for pw and pb for the whole Interval [a1, am]. In order to compute

values at t3, we use the values computed for t2 as initial conditions and proceed as in

the first step. Repeating this procedure allows us to compute a solution for the complete

time interval46.

Following this discussion our generic algorithm47 to compute a solution to the MoC at

time tj+1 starting in tj is:

Algorithm 5.1

1. Solve the system of ODEs (5.14c) and (5.14d) for the interval [tj, tj+1] , for each

ai.

2. For each ai, solve the characteristics (5.14a) and (5.14b), leading to a shifted grid

∆a′.

3. As the solutions found in step 1 are valid at ∆a′, use a suitable interpolation method

to compute solutions at (ai, tj+1) .

Finally, we will present a first numerical solution to eq. (5.13) computed according

to algorithm 5.1. The results shown in figure 5.2 were computed with the following

parameter values:

γ = 2, r = 0.016, ρ = 0.02, w = 3.99, b = w/2, s = 0.67 and µ = 0.067.

Those parameter values imply that mw = −0.078 and mb = 1.874 according to eq. (5.6).

Without the economic background those values are somehow arbitrary but satisfy all

requirements. Nevertheless, we have chosen those values corresponding to plausible eco-

nomic values48. The value of r corresponds to an annual interest rate of 5%. The arrival

rates imply a job-duration of on average five years and an average unemployment spell

of six months. The value of w implies a monthly wage of 1000$.

Finally, we assume initial distributions for pw(a, t0), pb(a, t0) ∼ N(10, 2), where we need

to introduce an adjustment factor to ensure that
∫
p (a, t0) da = 1. Therefore, we use a

weighted sum, i.e.

p (a, t0) = (1− ωb)pw(a, t0) + ωbp
b(a, t0),

where ωb ∈ [0, 1] can be interpreted as the initial unemployment rate. For the solution

shown in figure 5.2, we set ωb = 0.2.

Discussing the results shown in figure 5.2, we want to stress that panel B has a different

scale. Panel C shows the advantage of a continuous-time model as we are able to show

the surface of the density over the whole period. Panel A and B show only parts of the

mathematical literature. Strikwerda (2004) dedicates a complete chapter to methods on how to check if

such problems are well-posed.
46Introducing interpolation as an additional numerical method, introduces another possible source of

error. We will use interp1, a built-in Matlab function capable of cubic-spline interpolation. Assuming

that we compute a smooth density as required by the economic motivation, this error should be negligible.
47For the application on a two-dimensional uncoupled system see appendix 5.7.1.
48As the model is in continuous-time, the parameter values must reflect this aspect. Hence we cannot

use for example monthly or yearly data. This aspect is discussed in more detail in chapter 4 of this

thesis.
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Figure 5.2: Numerical solution of eq. (5.13) computed for a time span of eight years. Panel

A and B show sub-densities pw(a, t), pb(a, t) for beginning of each year only. Panel C shows

unconditional density p (a, t).

continuous solution for the sub-densities, i.e. the result corresponding to the beginning

of each year.

Looking at panel C, we can observe a decline of the absolute value of the mode. Hence

the distribution needs to get broader over time, to ensure that
∫
p (a, t) da = 1 ∀t49.

The decline of the mode as well as a wider area of support does also hold for pw(a, t)

and pb(a, t) individually. Due to the assumption that wealth is similarly distributed for

employed and unemployed individuals, the upward and downward drift is hard to see from

figure 5.2. Nevertheless the values for mw and mb together with the budget constraint

do explain that employed individuals increase their wealth, i.e. the upper bound of the

support needs to increase as in the beginning 80% are employed. At the same time 20%

are assumed to be unemployed and hence decrease their wealth, resulting in a decrease

of the lower bound of support of p (a, t).

5.5 Application II - CRRA

For the case of CRRA utility, the FPEs read

∂

∂t
pw (a, t) + [ra+ w − c (a, w)]

∂

∂a
pw (a, t) =

[
∂

∂a
c (a, w)− r − s

]
pw (a, t) + µpb (a, t) ,

(5.20a)

∂

∂t
pb (a, t) + [ra+ b− c (a, b)]

∂

∂a
pb (a, t) = spw (a, t) +

[
∂

∂a
c (a, b)− r − µ

]
pb (a, t) .

(5.20b)

Following section 5.3.1, the characteristic equations are given by

daC1

dt
= ra+ w − cw(a), (5.21a)

daC2

dt
= ra+ b− cb(a), (5.21b)

49One property of a solution to the FPE (5.4) is that the mass of the initial condition for p(a, t) is

conserved over time (cf. BW13).
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dpw(a, t)

dt
= [cwa (a)− r − s] pw(a, t) + µpb(a, t), (5.21c)

dpb(a, t)

dt
= spw(a, t) +

[
cba(a)− r − µ

]
pb(a, t), (5.21d)

where the indices of aC1 and aC2 indicate the fact that those describe the characteristics

and not the grid points of ∆a. All parameters are assumed to be given and fixed. Using

those parameters, optimal policy rules cw (a) and cb (a) are implied and hence assumed

to be known (cf. section 5.2.2), too.

To determine a unique solution we require initial conditions. Let those conditions be

defined by

pz(a, 0) = cz0(a), z ∈ {w.b} .

Having not been able to find a closed form solution in the easier case of CARA utility, we

focus solely on the numerical application of the MoC according to algorithm 5.1. Once

we have computed an exemplary solution in section 5.5.1, we will have a closer look on

the impact of each parameter in a comparative statics analysis in section 5.5.2.

5.5.1 A generic solution

Figure 5.3 shows an exemplary solution to the problem described in eq. (5.20), where

we have chosen all model parameters to show economic implications in a most clearly

way. Wage w corresponds to a monthly income of 1000$ and b corresponds to a monthly

income of 100$. Further we assume an annual interest rate of 5%, ρ = 0.03, and σ = 1.5.

Finally, we assume initial distributions for pw(a, t0) ∼ N(10, 2) and pb(a, t0) ∼ N(−2, 5).

The initial unemployment rate is set to ωb = 0.2. In order to determine the transition

rates, we assume the average employment spell to last for five years and an unemployment

spell is assumed to last on average for three years.

Compared to our first example shown in figure 5.2, we now use lower unemployment

benefits and a longer unemployment spell. Those two facts increase the uncertainty in our

model. Additionally, we assume that wealth is initially described according to two differ-

ent distributions for employed and unemployed individuals. Choosing different means for

the standard normal distribution allows easier identification of the precautionary savings

effect.

Looking at figure 5.3, the results are shown in the same way as in figure 5.2. Before

we start with the description, we would like to stress that the bimodal shape of the

distribution in panel C as well as for later time points in panel A and B are only due

to the initial choice of pz(a, t0). Empirical wealth distributions are more likely to be

unimodal as shown in the CARA case.

First, looking at pw (a, t) the main peak from the initial distribution moves upwards,

i.e. from 10, 000$ to around 30, 000$, in the period of eight years. Responsible for this

movement are the employed individuals, especially those who never became unemployed.

As discussed in chapter 4 of this thesis, individuals increase their wealth only during

employment. At the same time pw (a, t) gets ”blown up” at the lower wealth levels. This

increase in mass can be explained by individuals moving from unemployment into em-

ployment. By construction, i.e. with our chosen initial distribution pb(a, t0), unemployed

individuals have in the mean a lower wealth and as they reduce their wealth according to
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Figure 5.3: Numerical solution computed for a time span of eight years. Panel A and B show

sub-densities pw(a, t), pb(a, t) for beginning of each year only. Panel C shows unconditional

density p (a, t) as computed using a time grid of 0.4 months, i.e. 12 days.

the optimal consumption path they reduce their assets even more. So once they become

employed, they ”enter” into pw (a, t) at the lower end of the distribution.

The influence of our model setup is also visible for pb (a, t). We observe a downward

shift of the initial peak as well as pb (a, t) getting broader. The first effect is due to long-

term unemployed individuals who dis-save, i.e. reduce their wealth. The widening of the

distribution can be explained by employed and richer individuals becoming unemployed

over time and hence are represented in pb (a, t), too. Also in this case the movement of

the initial peak is mainly driven by individuals staying in their initial employment status,

i.e. the smaller peak moves downwards in terms of wealth from 5, 000$ to −20, 000$ due

to long-term unemployed.

As p (a, t) is the sum of pw (a, t) and pb (a, t) the previous results hold in panel C,

too. For figure 5.3 we have chosen the normal distribution as initial condition to show

the movements of the two components more clearly. A more realistic shaped wealth

distribution would result once we use initial conditions with a higher degree of skewness

and an upper tail.

Another implication of our model is the evolution of the unemployment rate. Looking

at the integral value of pb(a, t) allows us to observe the unemployment rate directly. Fig-

ure 5.4 shows the integral value of pw(a, t), pb(a, t) and p (a, t) for the same specifications

used as in figure 5.3.

Figure 5.4: Integral mass of sub-densities pw(a, t), pb(a, t) and unconditional density p (a, t) as

computed using the numerical solution.
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Due to our model setup and our chosen parameters, we know the theoretic value of

the long-time unemployment rate, which is equal to s
µ+s

= 37.5%. This theoretic value

is approached by the green line, i.e.
∫
pb(a, t)da, in figure 5.4. Looking at the red line,

we can observe the mass conservation property of the solution p(a, t) of the FPE. This

is one important aspect for judging the performance of the numerical solution in terms

of accuracy. Any change in the integral value away from the initial value would indicate

a truncation error, as we know that any solution to eq. (5.20) is mass conserving (cf.

BW13).

5.5.2 Comparative statics

At first we will analyse the influence of the time preference rate ρ on the wealth distribu-

tion. So far we used ρ = 0.03 to show the general behaviour of the wealth distribution.

Using two additional values for ρ, we can show that the general economic interpretation

of the time preference rate is replicated by our wealth distribution. In figure 5.5, we fix

all parameters to the values used in the previous section and vary ρ. To be more precise

we use ρ ∈ {0.025, 0.03, 0.035}. Hence we include a lower and a higher value of ρ as well

as the value used previously. The first main difference of the solutions shown in figure 5.5

Figure 5.5: Evolution of p (a, t) for three different values of ρ (shown in parts only). The green

line is equivalent to results shown in figure 5.3, C.

is the change in the wealth range the model is able to reproduce, which is

a ∈ [−24.033, 121.006] for ρ = 0.025,

a ∈ [−24.006, 69.192] for ρ = 0.03,

a ∈ [−24.295, 46.282] for ρ = 0.035.

As the instantaneous interest rate is equal to 0.0163, we see that the wealth range is

larger the closer r and ρ are. Responsible for this change is the optimal consumption

and the implied endogenous wealth range50. Comparing the overall shape of the different

50For a detailed discussion see chapter 4 of this thesis.
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solutions, shows that different values of ρ do not change the general behaviour described

in the previous section. The mode originating from pw (a, t0) at 10, 000$ moves to the

right and the second ”peak” originating from pb (a, t0) at −2000$ moves to the left. In

between those main peaks mass increases by job-to-unemployment and unemployment-

to-job transitions.

We can use several characteristics to compare different distributions. Candidates are

the moments of the probability density function as well as for example the Gini coefficient

or the Lorenz curve; two concepts to measure inequality of a distribution. The following

figure shows the evolution of mode, median, mean, and the standard deviation over the

eight year period for the three different values of ρ. Figure 5.6 shows that a higher value

Figure 5.6: Evolution of statistical quantities densities as shown in figure 5.5

of ρ yields a lower mean wealth over time. This is in accordance to the economic intuition

of the time preference rate: A higher value of ρ is characteristic for an individual focusing

on his/her present situation, compared to someone with a low time preference rate, who

is concerned more about his/her future. Once you focus on the present you save less, as

savings are an investment for future consumption. Hence, mean wealth should be lower

for higher values of ρ and this is exactly what we find in figure 5.6. Also the median,

mean, and the standard deviation is lower for higher values of ρ. This can be justified

with the same argument. An interesting behaviour can be seen for the median, which

switches from an increase to a decline after three years. For a low time preference rate

the median recovers, but for higher values of ρ the decline is permanent.

Looking at the remaining six model parameters w, b, µ, s, r, and σ and their influence,

we will only show the evolution of the mean. Looking at more than one characteristic

gives a better overall understanding, but in favour of a condensed presentation we abstain

from presenting more figures. The general influence and interpretation of the different

parameters can be given regardless.

Again we fix the initial and boundary conditions, as well as all parameters except

the one we are currently analysing to their previously specified levels and execute a

comparative statics analysis.

Figure 5.7 shows that all economic intuitions of the model parameters are still valid.

Panel A, shows a varying yearly interest rate between 3.47% and 6.55%. A higher interest

rate yields that savings are more beneficial and hence mean wealth growths faster and

reaches higher levels. For the two cases of lowest interest rate it seems that the interest

rate is too low for an incentive to keep up with the precautionary savings.
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Figure 5.7: Comparative statics using the mean of p (a, t) . We vary parameters w, b, µ, s, r

and σ in turns.(inlets of each panel gives the varying variable and the values used). All other

parameters remain fixed and are chosen as described in the beginning of section 5.5.1. The red

line represents the same set of parameter values in each panel.

Looking back at CRRA utility, we know that a higher value for σ is equal to a lower

utility of consumption. Hence, as shown in panel B, a higher risk aversion parameter

leads to less consumption and higher savings, i.e. a higher mean wealth over time.

Analysing the effects of wage income in panel C is also as expected. A higher wage

increases both the speed and amount of savings leading to a higher mean wealth. For

low wage rates, it seems not possible to increase individuals savings in the mean. To be

more precise, mean wealth does in fact decrease over time if the wage rate is too low.

Looking at the ratio between wI and bI used in panel C, the ratio wI/bI varies between

5 (for wI = 1.9959) and 15 (wI = 5.9878)51. Hence for a low ratio, mean wealth is lower

than in the case of a higher ratio. This is also an intuitive result, taking into account

the length of the (un)employment spells. Individuals can only save when employed and

in case they earn more they are likely to save more.

Looking at panel D and the effects of different unemployment benefit payments can

be seen. A lower value for unemployment benefits leads to higher mean wealth. This is

at first sight counter-intuitive behaviour, but it can be explained using the ratio wI/bI.

This ration varies between 20 (for bI = 0.19959) and 6.667 (bI = 0.59878) and hence

the behaviour is similar to the one in the previous case of varying w. A high ratio wI/bI

leads to higher mean wealth.

Panel E and F analyse the influence of the arrival rates. We vary the length of the

unemployment spell between six years (µ = 0.05556) and two years (µ = 0.1667). The

employment spell is constant and equal to five years. Here a shorter unemployment

spell leads to a lower mean wealth. In terms of the ratio µ/s we use a range of 0.833

(µ = 0.0556) and 2.5 (µ = 0.167), where a lower ratio leads to a higher mean wealth.

Again it seems that the ratio is more important than the arrival rates itself. This fact

is validated looking at the influence of s. Here we vary the length of the employment

51As a reminder, we used a fixed value of bI = 0.399187.
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spell between ten years (s = 0.033) and three years and four months (s = 0.1). As a

reference, the unemployment spell is fixed to be equal to three years. In general, we

see that for a longer employment spell duration mean wealth is lower than for shorter

employment duration spells. This could be explained by a neglect of precautionary

savings due to a higher degree of security. In case of short employment spells, i.e. a high

risk of unemployment and high insecurity, individuals choose to save more and hence

mean wealth increases. In terms of ratio µ/s, which varies between 3.33 (s = 0.033) and

1.11 (s = 0.1) a lower ratio leads in general to a higher mean wealth - the same result as

seen in panel E52.

In summary, comparative statics have shown that the ratios w/b and µ/s are of impor-

tance if we want to explain influences. Nevertheless, the absolute value of each variable

on its own does influence the results as well.

5.6 Conclusion
The objective of this paper was to give possible solution techniques for a coupled two-

dimensional system of partial differential equations arising in the analysis of distributional

properties via FPEs. Focusing on an stochastic labour market model with two different

specifications of individual instantaneous utility function, we are able to show that the

MoC can be used to obtain a solution in both cases. In general, the MoC can be used to

obtain an analytical as well as an numerical solution. In terms of a numerical solution,

we compare the MoC to two finite-difference methods that can be used to solve the

problem in question - the Lax-Friedrich method and the Crank-Nicolson method. Due

to the additional information that can be gained from the MoC as well as the theoretical

possibility of obtaining a closed form solution with the help of the MoC, we favour the

MoC. Finally, we apply the MoC for both specifications of constant absolute risk aversion

and constant relative risk aversion.

In the simpler case of CARA utility, we show that the MoC can be used to express the

probability density function of wealth as a system of integral equation. Unfortunately,

this system cannot be solved analytically. Using a numerical solution, we can present an

exemplary solution of the FPEs.

For the economic more relevant and more complex version of the model with CRRA

utility, we demonstrate how wealth evolves over time using again a numerical solution

based on the MoC system. Especially due to the characteristics, we can explain how

an initial wealth distribution changes its shape over time. Here the influence of long-

time unemployed at the lower end of the distribution and the influence of employed

individuals at the upper end are clearly visible. Other results obtained in a comparative

statics analysis do also show economic conclusive behaviour of the numerical solution.

In summary, using the MoC in combination with the use of FPEs offers a strong

tool to answer questions concerning distributional dynamics. Looking at distributional

properties in general is a pervasive motive in economic research, making both of those

techniques a favourable tool for future research.

52s = 0.1 and s = 0.083 seems to be a special case as the mean wealth is lower or equal after eight

years than with lower s values. This can be explained with the close proximity of µ = 0.11 and s in

those cases.
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5.7 Appendix of Chapter 5

5.7.1 A simple test case for the generic algorithm

From a intuitive point of view our generic algorithm is the one-to-one mapping of the

mathematical idea behind the MoC to a numerical solution. Nevertheless, we want to test

algorithm 5.1 with a fairly simple example, where we know all key ingredients. Therefore

let u(x, t) : R2 × R+
0 → R. We want to solve the following initial value problem:

ut +

(
4 0

0 9

)
ux =

(
0

0

)
, u(x, 0) =

(
2x

3x

)
.

It is easy to verify that

u(x, t) =

(
2x− 8t

3x− 27t

)
is the unique solution to that problem. Basically, we deal with two independent PDEs

as they are not coupled through the right hand side.

Transforming those PDEs into ODEs with the help of the MoC reads

ȧC1 = 4, ȧC2 = 9, (5.22a)

u̇1 (x1 (t) , t) = 0, u̇2 (x2 (t) , t) = 0. (5.22b)

Those equations are all easy to solve. The characteristics are given by aC1(t;xi) = xi+4t

and aC2(t;xi) = xi+9t. Eqs. (5.22b) can also be solved explicitly, i.e. ui(.) = Ci, i = 1, 2

and Ci constant. Putting those results together, the MoC tells us that the solution of

the PDEs is constant along a straight line. Once we know an initial value, this value is

propagated along the characteristic, i.e. along a straight line.

According to algorithm 5.1, we have to compute the solution of the ODEs (here a

constant value given by the previous step) and than we ”move” with this solutions along

the characteristics. Afterwards, we compute the values of the solutions on the original

grid due to interpolation (and extrapolation). In our example the exact solutions are

two planes in R3. The solution computed with ”eEuler” produces already good results

for small values of ht due to the fact that the solution of the ODE is constant. This

is a result with respect to the relative error, i.e. the quotient of the absolute value of

the difference between the approximation and the exact value and the absolute value of

the exact solution, which is shown in figure 5.8. Therein, the error values around the

dash-dotted line, i.e. the roots of the exact solution, can be explained by the nature of

the relative error. Whenever the exact solution equals 0, i.e. in our case at x = 4t for

u1(.) and at x = 9t for u2(.), the relative error is not defined as we would need to divide

by zero. Also in the proximity of this line, the relative error is likely to ”explode” as

soon as the numerical approximation differs slightly from 0 as we divide by a value close

to zero.

Besides that problem, the numerical solution is approximate up to 10−10 % and 10−9 %

respectively. Hence we can claim that the exact solution and the approximation are

identical and our algorithm is correct.
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Figure 5.8: Contourplot of the relative error. The dash-dotted line represents the loci where the

exact solution is equal to 0. Along this line the relative error is likely to explode if the numerical

solution is not equal to 0.

5.7.2 Derivation of the Crank-Nicolson method

This section gives the derivation of the formulas needed for the Crank-Nicolson method.

The partial derivatives are approximated using

∂

∂a
pzi,j+1 =

1

2

[
pzi+1,j+1 − pzi−1,j+1

2ha
+
pzi+1,j − pzi−1,j

2ha

]
=

1

4ha

[
pzi+1,j+1 − pzi−1,j+1 + pzi+1,j − pzi−1,j

]
,

∂

∂t
pzi,j+1 =

pzi,j+1 − pzi,j
ht

,

pzi,j+1 =
1

2

(
pzi,j+1 + pzi,j

)
, z ∈ {w, b} .

Again assuming that we know all values at time tj the PDE approximating the value at

(ai, tj+1) , i ∈ [1, ...,m] reads

pi,j+1 − pi,j
ht

+
1

4ha

(
B11 0

0 B22

)
[pi+1,j+1 − pi−1,j+1 + pi+1,j − pi−1,j]

=
1

2

(
C11 C12

C21 C22

)
(pi,j+1 + pi,j) .

Using s := ht
ha

this can be simplified to

4 (pi,j+1 − pi,j) + s

(
B11 0

0 B22

)
[pi+1,j+1 − pi−1,j+1 + pi+1,j − pi−1,j]

= 2ht

(
C11 C12

C21 C22

)
(pi,j+1 + pi,j) .

Looking at the first row of this matrix equation and rearranging values according to their

time evaluation yields:

4pwi,j+1+sB11

(
pwi+1,j+1 − pwi−1,j+1

)
= 4pwi,j − sB11

(
pwi+1,j − pwi−1,j

)
+ 2ht

[
C11

(
pwi,j+1 + pwi,j

)
+ C12

(
pbi,j+1 + pbi,j

)]
.
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Using simple algebra this is equivalent to

−sB11p
w
i−1,j+1+ (4− 2htC11) pwi,j+1 + sB11p

w
i+1,j+1 − 2htC12p

b
i,j+1

= sB11p
w
i−1,j + (4 + 2htC11) pwi,j − sB11p

w
i+1,j + 2htC12p

b
i,j.

Doing the same for the second row yields:

−sB22p
b
i−1,j+1+ (4− 2htC22) pbi,j+1 + sB22p

b
i+1,j+1 − 2htC21p

w
i,j+1

= sB22p
b
i−1,j + (4 + 2htC22) pbi,j − sB22p

b
i+1,j + 2htC21p

w
i,j.

The objective is to compute all values of p at time tj+1 given our knowledge of the

boundary condition (i.e. p1,j+1 and pm,j+1) as well as all previously computed values

pi,j, i = 1, ...,m.

Introducing a vector containing the unknowns we want to determine for tj+1, i.e.

p̂i,j+1 :=
[
pw2,j+1, ..., p

w
m−1,j+1, p

b
2,j+1, ..., p

b
m−1,j+1

]
, we end up with the following system

that needs to be solved:

L · p̂i,j+1 = z, L ∈ R2(m−2)×2(m−2)

where

L ≡



4− 2htC11 sB11 −2htC12

−sB11
. . . . . . . . .
. . . . . . sB11

. . .

−sB11 4− 2htC11 −2htC12

−2htC21 4− 2htC22 sB22

. . . −sB22
. . . . . .

. . . . . . . . . sB22

−2htC21 −sB22 4− 2htC22


and

z ≡



sB11

(
pw1,j − pw3,j + pw1,j+1

)
+ (4 + 2htC11) pw2,j + 2htC12p

b
2,j

sB11

(
pw2,j − pw4,j

)
+ (4 + 2htC11) pw3,j + 2htC12p

b
3,j

...

sB11

(
pwm−3,j − pwm−1,j

)
+ (4 + 2htC11) pwm−2,j + 2htC12p

b
m−2,j

sB11

(
pwm−2,j − pwm,j − pwm,j+1

)
+ (4 + 2htC11) pwm−1,j + 2htC12p

b
m−1,j

sB22p
b
1,j + (4 + 2htC22) pb2,j − sB22p

b
3,j + 2htC21p

w
2,j + sB22p

b
1,j+1

sB22p
b
2,j + (4 + 2htC22) pb3,j − sB22p

b
4,j + 2htC21p

w
3,j

...

sB22p
b
m−3,j + (4 + 2htC22) pbm−2,j − sB22p

b
m−1,j + 2htC21p

w
m−2,j

sB22p
b
m−2,j + (4 + 2htC22) pbm−1,j − sB22p

b
m,j + 2htC21p

w
m−1,j − sB22p

b
m,j+1


.
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