This is the complete appendix to

Tang, P.J.G. and Wälde, K., International competition, growth and welfare, forthcoming European Economic Review

International competition, growth and welfare

Paul J. G. Tang, Central Planning Bureau, The Hague Klaus Wälde (corresponding author)

Department of Economics, University of Dortmund, 44221 Dortmund, Germany

Appendix 1: The reduced form of the world economy

Equation (12) is found by inserting (8) into $\dot{\eta}/\eta = \dot{n}_m/K_n = \dot{n}_m^A/K_n + \dot{n}_m^B/K_n$. To this end, rearrange (8) to $\frac{\dot{n}_m^i}{K_n} = L^i - n_m^i x_m^i - n_d s^i x_d$ and obtain $\dot{\eta}/\eta = L - n_m^A x_m^A - n_m^B x_m^B - n_d x_d$.

Observing that demand for monopolistic varieties is the same independently of their origin (as prices are identical which in turn results from factor price equalization), inserting demand

functions (3) yields
$$\frac{\dot{\eta}}{\eta} = L - n_m \frac{p_m^{-\varepsilon}}{n_m p_m^{1-\varepsilon} + n_d p_d^{1-\varepsilon}} E - n_d \frac{p_d^{-\varepsilon}}{n_m p_m^{1-\varepsilon} + n_d p_d^{1-\varepsilon}} E$$

$$=L-\frac{n_mp_m^{-\varepsilon}+n_dp_d^{-\varepsilon}}{n_mp_m^{1-\varepsilon}+n_dp_d^{1-\varepsilon}}E \quad =L-\frac{n_mp_m^{1-\varepsilon}+n_d\mu^{-\varepsilon}p_m^{1-\varepsilon}}{n_mp_m^{1-\varepsilon}+n_dp_d^{1-\varepsilon}}\frac{E}{p_m} \quad =L-\frac{n_m+n_d\mu^{-\varepsilon}}{n_m+n_d\mu^{1-\varepsilon}}\alpha\frac{E}{w}, \quad \text{where}$$

the last but one equality used $p_d = \mu p_m$. As $\alpha E w^{-1} = \alpha \delta$ and $\frac{n_m + n_d \mu^{-\epsilon}}{n_m + n_d \mu^{1-\epsilon}}$

$$= \frac{n_m + n_d + n_d \mu^{-\varepsilon} - n_d}{n_m + n_d + n_d \mu^{1-\varepsilon} - n_d} = \frac{\eta + \mu^{-\varepsilon} - 1}{\eta + \mu^{1-\varepsilon} - 1} = \frac{\eta + \mu^{-\varepsilon} - 1 + \mu^{1-\varepsilon} - \mu^{1-\varepsilon}}{\eta + \mu^{1-\varepsilon} - 1} = 1 + \frac{\mu^{-\varepsilon} - \mu^{1-\varepsilon}}{\eta + \mu^{1-\varepsilon} - 1}, \text{ we}$$

obtain (12).

Equation (13) can be obtained by differentiating (7) with respect to time, $\pi_m + \dot{v}_m = rv_m$, and inserting this with the expenditure equation (2) into $\dot{\delta}/\delta = \dot{E}/E - \dot{n}/n - \dot{v}_m/v_m$ = $-\rho - \dot{\eta}/\eta + \pi_m/v_m$, where $\dot{n}/n = \dot{\eta}/\eta$ has been used. The profit ratio can be written as $\frac{\pi_m}{v_m}$

$$= (1-\alpha)\frac{p_m x_m}{v_m} = (1-\alpha)\frac{p_m^{1-\varepsilon}}{n_m p_m^{1-\varepsilon} + n_d p_d^{1-\varepsilon}} \frac{E}{v_m} = \frac{(1-\alpha)(n_m + n_d)}{n_m + n_d \mu^{1-\varepsilon}} \delta$$

$$= \frac{(1-\alpha)(n_m + n_d)}{n_m + n_d + n_d \mu^{1-\varepsilon} - n_d} \delta = \frac{(1-\alpha)\eta}{\eta + \mu^{1-\varepsilon} - 1} \delta \quad \text{and} \quad \text{inserting} \quad \text{gives} \quad \delta/\delta$$

$$= -\rho - L + \alpha \left(1 + \frac{\mu^{-\varepsilon}(1-\mu)}{\eta + \mu^{1-\varepsilon} - 1}\right) \delta + \frac{(1-\alpha)\eta}{\eta + \mu^{1-\varepsilon} - 1} \delta = \left(\alpha + \frac{\alpha\mu^{-\varepsilon}(1-\mu) + (1-\alpha)\eta}{\eta + \mu^{1-\varepsilon} - 1}\right) \delta - \rho - L. \text{ As}$$

$$\alpha + \frac{\alpha\mu^{-\varepsilon}(1-\mu) + (1-\alpha)\eta}{\eta + \mu^{1-\varepsilon} - 1} = \frac{\alpha(\eta + \mu^{1-\varepsilon} - 1) + \alpha\mu^{-\varepsilon} - \alpha\mu^{1-\varepsilon} + (1-\alpha)\eta}{\eta + \mu^{1-\varepsilon} - 1} = \frac{-\alpha + \alpha\mu^{-\varepsilon} + \eta}{\eta + \mu^{1-\varepsilon} - 1}$$

$$= \frac{-\alpha(1-\mu^{-\varepsilon}) + \eta + \mu^{1-\varepsilon} - 1 - \mu^{1-\varepsilon} + 1}{\eta + \mu^{1-\varepsilon} - 1} = 1 + \frac{1-\mu^{1-\varepsilon} - \alpha(1-\mu^{-\varepsilon})}{\eta + \mu^{1-\varepsilon} - 1}, \text{ we obtain (13)}.$$

When $\eta < \eta$ in the no-growth trap and therefore $\dot{\eta} = 0$, we obtain

$$\dot{\delta}/\delta = -\rho + \pi_m/v_m = \frac{(1-\alpha)\eta}{\eta + \mu^{1-\varepsilon} - 1}\delta - \rho.$$

Appendix 2: Further derivations

Deriving equation (9)

In autarky, the labor market clearing condition can be written as

$$\frac{\dot{n}}{n}\frac{n}{K_n} = L - n\frac{E}{np}.$$

This equation shows the assumption that knowledge spillovers are general and denoted by K_n .

Replacing \dot{n}/n by the growth rate g yields

$$g = \frac{K_n}{n} \left(L - \frac{E}{n} \right) = \frac{K_n}{n} L - \alpha \frac{E}{vn}, \tag{A.1}$$

where we have used

$$\frac{E}{p} = \alpha \frac{E}{w} = \alpha \frac{E}{vK_n}.$$

From the derivative of the free entry condition, $\pi + \dot{v} = rv$, and using $\dot{v}/v = -g$ and $r = \rho$ by

choice numeraire, we obtain

$$-g = \rho - \frac{\pi}{v} = \rho - (1 - \alpha) \frac{px}{v} = \rho - (1 - \alpha) \frac{\overline{E}}{vn}.$$
 (A.2)

Adding (A.1) to (A.2) gives

$$0 = \frac{K_n}{n}L - \alpha \frac{\overline{E}}{vn} + \rho - (1 - \alpha) \frac{\overline{E}}{vn} = \frac{K_n}{n}L - \frac{\overline{E}}{vn} + \rho$$

$$\Leftrightarrow \frac{\overline{E}}{vn} = \frac{K_n}{n} L + \rho.$$

Reinserting into (A.1), we obtain

$$g = \frac{K_n}{n} L - \alpha \left(\frac{K_n}{n} L + \rho \right) = (1 - \alpha) \frac{K_n}{n} L - \alpha \rho.$$

Deriving equation (19)

The derivative of the gain function in (18) is given by

$$G'(g^{i}) = \alpha \frac{L^{i} - g^{i}}{L^{i}} \left[-\frac{(-1)L_{i}}{(L^{i} - g^{i})^{2}} \right] - \frac{1 - \alpha}{\rho}$$
$$= \alpha \frac{1}{L^{i} - g^{i}} - \frac{1 - \alpha}{\rho} > 0.$$

Rearranging gives

$$\alpha \rho > (1-\alpha)L^i - (1-\alpha)g^i \Leftrightarrow g^i > \frac{1}{1-\alpha}((1-\alpha)L^i - \alpha\rho).$$