
Chapter 4

Semi-Markov processes in labor market

theory

4.1 Introduction and underlying setup

Semi-Markov processes are, like all stochastic processes,models of systems or behavior.

As extensions of Markov processes and renewal processes, Semi-Markov processes are

widely applied and hence, an important methodology for modeling. Semi-Markov pro-

cesses are used in computer science and engineering, e.g. inqueuing theory and server

models, see Cohen (1982). In finance, for example, credit rating and reliability models

are based upon Semi-Markov theory like in D’Amico et al. (2006). Other applications in

business administration are operations research like in Sobel and Heyman (2003), as well

as manpower models as described in Mehlman (1979). Moreover, Semi-Markov mod-

els are employed in sociology or socioeconomics, see Mills (2004) for a model of the

marriage market. In biology and medicine, Semi-Markov processes are used for progno-

sis and the evolution of diseases, see Beck and Pauker (1983) or Foucher et al. (2005).

For demographic questions, models of disability or fertility, Semi-Markov processes are

employed, too, see Hoem (1972).

Consequently, Semi-Markov processes are interdisciplinary important and, of course,

also economics has discovered the usefulness for modeling issues. Already Markov pro-

cesses, which can be seen as a special case of Semi-Markov processes, are widely used to

describe the different states of an economy or an individual. Depending on the currently

occupied state only, there are different transition rates to other states. Possible applica-

tions of Markov chains in economics are standard matching models of the labor market

as described in Pissarides (2000) or money demand models like in Kiyotaki and Wright

(1993). In this chapter, we will focus on the former ones as the methods presented build
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the background for the numerical solution of our labor market model in chapter 3. Typ-

ically, the possible states of an individual in the labor market areunemploymentor em-

ploymentand the transitions between these states are described by Markov processes. For

simplification, most of the models in literature take the transition rates between the labor

market states to be constant, see the standard matching setup in Pissarides (2000), Pis-

sarides (1985), Mortensen and Pissarides (1994), for example, or Rogerson et al. (2005)

for an overview. This simplification may be appropriate for many questions if incentive

effects of labor market institutions can be neglected. For other applications, however,

this assumption needs generalization. When the behavior of individuals and the incentive

effects of unemployment insurance systems are to be analyzed, for example, station-

ary job arrival rates over the unemployment spell are no longer realistic, see Mortensen

(1977) amongst others. In fact, it is plausible that the arrival rate of jobs exhibits true

duration dependence. Reasons for this can be found in search effort reactions due to

non-stationary benefits or stigmas attached to or perceivedby long-term unemployed.

Empirical evidence with respect to non-stationary hazard rates can be found in Heckman

and Borjas (1980), Meyer (1990), or van den Berg and van Ours (1994), for instance.1

However, models considering duration-dependent hazard rates are typically restricted to

analyze microeconomic behavior only and thus, the Semi-Markov structure is negligible

as the first order condition for optimal behavior is unaffected. Therefore in chapter 3,

a full equilibrium labor market model is built up with non-stationary exit rates out of

unemployment and the parameters of the model are estimated structurally.

Allowing for duration-dependent transition rates has methodological consequences

regarding the state distribution of individuals. Analytical solutions for transition proba-

bilities and distributions are no longer feasible for such models having non-analytic and

non-stationary transition rates and numerical solution methods are required. Thus, the

purpose of this chapter is twofold. First, an accurate, but intuitive definition and clas-

sification of Semi-Markov processes among the family of stochastic processes will be

given, emphasizing the application to labor market models.Second, it provides a recipe

of how to solve for the transition probabilities of Semi-Markov processes, as well as the

description of the limiting behavior.

In a first step, this chapter presents the Semi-Markov theory. The properties and tran-

sition probabilities, as well as the limiting behavior are discussed on the basis of Pyke

(1961a) and Pyke (1961b), Kulkarni (1995), and Ross (1996). While the transition proba-

bilities of continuous-time Markov chains are computed using the Chapman-Kolmogorov

equations, which can be solved analytically, for Semi-Markov processes, the correspond-

1For a discussion of non-stationary hazard rates and possible sources, see subsection 3.2.2.
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ing probabilities are based on the renewal argument and convolution theory. An analyt-

ical solution is very difficult in this case and impossible for the setup of chapter 3, so

the determination of the transition probabilities and of the limiting probabilities is about

numerical solution methods and it makes sense to deal with a specific example. Consid-

ering the economic model of chapter 3, there exist two groupsin the labor market like

in the standard model: the unemployed and the employed workers. This makes things

as simple as possible, but clearly shows the solution approach at the same time. The

job of an employed worker is destroyed at an exogenous separation rateλ and so the

waiting time until job destruction is exponentially distributed with parameterλ. An un-

employed job seeker with unemployment spells gets new offers at rateµ (φ (s) θ, η (s)),

whereφ (s) is the job search effort of the unemployed with spells, θ is the labor market

tightness, andη (s) is an exogenous spell effect.2 Having an unemployment insurance

system with non-stationary benefits, it makes sense to assume that an unemployed indi-

vidual adjusts his search effort over the spell. With increasing unemployment duration,

for example, the lower benefits of long-term unemployed get closer. Thus, it is plausible

that effort increases before long-term unemployment is realized. Assuming that the job

arrival rateµ (φ (s) θ, η (s)) increases with search effort, this partial effect would lead to

an increasing job arrival rate. The duration-dependent spell effect η (s) catches remain-

ing duration-dependent factors, which may affect the job arrival rate. This partial effect

is discussed in chapter 3 in detail, where it leads to a decreasing job arrival rate for long-

term unemployed.

In this chapter, however, we focus on the pure duration dependence and not on its sources.

Therefore, we neglect all other arguments buts and reduce the notation toµ (s) for sim-

plification.

In chapter 3, the steady state behavior of the model economy is analyzed. Using the

optimal search effort of an unemployed over the unemployment spell, we derive the den-

sities for the duration in both states. With these densities, the parameters of the structural

arrival rate are estimated with micro data from the GSOEP. Based on the parameter esti-

mates, the job arrival rates can be computed as well as transition probabilities and hence,

the state distribution for an economy of representative agents can be determined apply-

ing the methods derived in this chapter. The knowledge of thestate distribution makes it

possible to evaluate the Hartz IV reforms in terms of unemployment and welfare effects

by models like the one in chapter 3.

The starting point for the calculation of the transition probabilities are interdependent

Volterra integral equations of the first and the second kind,which can be derived applying

2Compare subsection 3.3.1 for details on the modeling of the job arrival rate.
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the Semi-Markov theory. The key issue is to solve the integrals, which contain unknowns

and cannot be solved analytically. To this end, the problem is transformed into a discrete

one and numerical solution methods are discussed. The different methods have different

advantages and drawbacks. As a rule, the more precise a method is, the longer the com-

putation takes, leading to a time-preciseness trade-off. The different numerical results

for the transition probabilities are therefore collected and discussed. First, the special

case of constant arrival rates is considered. The Semi-Markov process is a continuous-

time Markov chain then, for which the transition probabilities are known. Hence, the

numerical solutions can directly be compared to the analytical solution. Permitting non-

stationary arrival rates, with the setup taken from chapter3, a comparison to an analytical

solution is no longer possible. Hence, the numerical methods can only be studied inde-

pendently and with respect to the limiting behavior. As expected, the more complicated

method provides the more exact results for the transition probabilities. Since this already

applies to smaller step numbers, the computational effort of the more complex method

can be outweighed by using less steps. This also applies to the limiting distribution.

The outline of this chapter is as follows. Section 4.2 describes the basics of Semi-

Markov processes. From section 4.3 on, we apply the Semi-Markov theory to our labor

market model presented in chapter 3, in order to illustrate solution procedures for tran-

sition probabilities of Semi-Markov processes. In section4.4, numerical solution pro-

cedures are described. Section 4.5 presents and compares the outcomes of the different

numerical methods and section 4.6, finally, concludes with the findings of this chapter.

4.2 Semi-Markov processes - the basics

This section deals with the basics of (Semi-)Markov processes. First of all, like Markov

processes, a Semi-Markov process is a stochastic process. Astochastic process collects

realizations of one or more random variables over time and the theory of stochastic pro-

cesses tries to find models which describe such probabilistic systems. One can distinguish

between discrete-time processes and continuous-time processes. While the system is ob-

served at discrete points in time only in the first case, thereis continuous observation

given for the latter. Throughout this chapter, we focus on the continuous-time versions.

The starting point of this section is a brief introduction toMarkov processes since many

well-known concepts also hold for Semi-Markov processes. After that, the definition

of Semi-Markov processes will be given and their propertieswill be outlined. The sec-

tion concludes with a derivation of conditional transitionprobabilities of Semi-Markov

processes.
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4.2.1 Continuous-time Markov chains

Markov chains are stochastic processes and have the property of being memoryless. This

means that a continuous-time Markov chain (CTMC) is a sequenceof realized states and

the transition probability to another state depends on the current state only and not on the

history of states. Therefore, for the continuous-time Markov chain the following Markov

property holds:

P {X (t+ s) = j|X (t) = i,X (u) : 0 ≤ u < t} = P {X (t+ s) = j|X (t) = i} ,

whereX (t) denotes the state of the system at timet andX (u) : 0 ≤ u < t denotes all

statesX (u) in the history from0 up tot, compare Kulkarni (1995). In other words, this

property means that the probability of being in statej at t+ s, given that the system was

in statei at t and the complete history of states, is equal to the probability without the

information on the complete history.

The duration period of a CTMC in statei is exponentially distributed with parameter

λi, so the probability of leaving a statei towards anotherarbitrary state in a spell ofs or

less is given by

F (s) = P {S ≤ s} =

{

0 if x ≤ 0

1 − e−λix if x > 0.

The state duration period of leaving statei towards aspecificstatej is exponentially

distributed with parameterλij ≥ 0. By definition, it holds that
∑

j 6=i λij = λi. The

parametersλi andλij are also called transition or hazard rates, which becomes clear

when considering the definition of the hazard. The hazard rate is the probability of in-

stantaneously leaving statei at t, given that statei has been occupied tillt, see Lancaster

(1990). Therefore, the hazard rate for leaving statei to any state is the probability density

function of the durationf (t) divided by the survival function in this statei, 1 − F (t):

h (t) =
f (t)

1 − F (t)

=
λie

−λit

e−λit
= λi.

Equivalently, the hazard rateλij for leaving statei and going to statej can be determined.

The states of a Markov process and the corresponding transition rates can be visualized

in rate diagrams. Figure 4.1 shows the rate diagram for a two-state Markov process. Let

the states be state ‘0’ and state ‘1’ and the transition ratesλ01 andλ10 be given byµ and

λ3, respectively. Clearly, in a process with two states, the rate of leavingi and going to

3The variableλi with a subscript denotes general arrival rates, while the variableλ without any sub-

scripts is often used for separation rates in job search models. This notation is kept throughout this chapter.
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Figure 4.1: Rate diagram for a CTMC with two states (0 and1). The states are rep-

resented by the ovals. The transition rates are given at the arrows that symbolize the

transition.

j, λij, is identical to the rate of leavingi, λi =
∑

j 6=i λij. Therefore, the rates are simply

given byλ01 = λ0 = µ andλ10 = λ1 = λ.

The transition probability matrixP = [pij (t)] contains the probabilities that the sys-

tem which is initially in stateiwill be in statej att, P {X (t) = j|X (0) = i}. In order to

compute these transition probabilities, the Chapman-Kolmogorov equations can be used,

for details see Ross (1996), for instance. In contrast to discrete-time Markov chains

(DTMCs), where the limiting behavior depends on specific properties of the DTMC, the

limit of a CTMC transition probability matrix always exists.The limits are given by

lim
t→∞

pjj (t) =
1

λjηjj

and

lim
t→∞

pij (t) =
fij

λjηjj

,

wherefij is the probability that the spell of statei is less than infinity and a transition

occurs toj, fij = P {Tj <∞|X (0) = i}. Tj is the first time the CTMC enters state

j andηjj is the expected reoccurrence time of statej, given that the initial state isj,

ηjj = E [Tj|X (0) = j]. A proof is provided in Kulkarni (1995).

The interpretation of the limit ofpjj (t) is as follows:1/λj is the expected duration in

statej and once the process leaves statej, ηjj is the expected time until re-entering state

j.

For the limiting probability of ending inj when starting ini, one needs to know how

likely a transition fromi to j in a period less than infinity is, which is given byfij =

P {Tj <∞|X (0) = i}. Once the system enters statej, only the limiting probability

for ending in statej upon beginning in statej is needed, which we just determined

aspjj (t) = 1/(λjηjj). The joint probability is then the product of both probabilities,

thereforefij is multiplied by1/(λjηjj).
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The limiting probabilities are illustrated by returning tothe example from figure 4.1.

The rateλ1 is given byλ1 = λ and the rateλ0 by λ0 = µ. The expected reocurrence time

ηjj is given by the sum of the expected duration in both states,ηjj = 1
λj

+ 1
λi

. So, the

expected duration in statej, 1/λj, and the expected duration in statei, 1/λi, after having

left statej are added up. Having all this in mind,limt→∞ pjj (t) = 1
λjηjj

becomes4

lim
t→∞

p00 (t) =
λ

µ+ λ
and lim

t→∞
p11 (t) =

µ

µ+ λ
. (4.1)

In standard labor market models with the two statesemploymentandunemployment, this

limiting distribution is equal to the equilibrium unemployment rate and employment rate,

respectively, which can be shown by using a law of large numbers.

CTMCs whose expected returning time for a state is less than infinity are calledergodic

and they have an interesting property. Namely, the limitingdistribution of the states does

not depend on the initial distribution of states,pj = limt→∞ P {X (t) = j|X (0) = i}.

In this case, the limiting distribution can be computed by using the so-called balance

equations,
∑

jǫS

piλij =
∑

jǫS

pjλji,

combined with the condition that all probabilities must sumup to 1,
∑

jǫS pj = 1. The

idea behind the balance equation is quite simple: in the limit, flows out of statei must

equal flows into statei. This property also leads to the well-known expression for the

equilibrium unemployment rate in standard matching modelswith constant arrival rates.

4.2.2 Semi-Markov processes

Also for Semi-Markov processes (SMPs) it holds that only thecurrent state is relevant

for the transition rates - and in this sense, there is still memorylessness. However, the

transition rates to other states may change over the duration of a state and therefore,

the inter-arrival times between subsequent states are no longer exponentially distributed.

Thus, the extensions compared to CTMCs are an arbitrary duration distribution and non-

stationary transition rates.

A natural way to approach SMPs is through renewal theory, where inter-arrival times

between events do not need to be exponentially distributed.For this purpose, it is helpful

to define a Markov renewal sequence as a sequence of a bivariate random variable first.

4In a system with two states, the remaining limiting probabilities are computed bylimt→∞ pij (t) = 1−

limt→∞ pii (t). Hence, the limiting transition probability from state1 to state0 is limt→∞ p10 (t) = λ
µ+λ

and the limiting transition probability from state0 to state1 is limt→∞ p01 (t) = µ
µ+λ

.
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The two elements of this bivariate random variable are the observation timeSn of the

nth transition and the correspondingnth observationYn, n ≥ 0, YnǫI = {0, 1, 2, ..}.

The joint probability of observingYn+1 = j in an inter-arrival time ofSn+1 − Sn ≤ x,

conditioned on the observation history, satisfies the Markov property,

P {Yn+1 = j, Sn+1 − Sn ≤ x|Yn = i, Sn, Yn−1, Sn−1, ..., Y0, 0} =

P {Yn+1, Sn+1 − Sn ≤ x|Yn = i} ≡ Gij (x) . (4.2)

Finally, a SMP is a stochastic process that records the stateof the Markov renewal process

at each point in time, see Pyke (1961a).

More formal, let{(Yn, Sn) , n ≥ 0} be a Markov renewal sequence. LetN (t) be the

state with the last completed state spell beforet, N (t) = sup {n ≥ 0:Sn ≤ t} , and let

X (t) = YN(t). Then, the stochastic process{X (t) , t ≥ 0} is denoted as a Semi-Markov

process. The matrixG (x) = [Gij (x)] as defined in equation (4.2) is called thekernelof

the SMP, compare Kulkarni (1995).

Next, we discuss some properties of SMPs, which help to classify them. A SMP is

time-homogeneousif just the interval until the next transition matters for the probability

- not when this interval started, or more specific

P {Yn+1 = j, Sn+1 − Sn ≤ x|Yn = i} = P {Y1 = j, S1 ≤ x|Y0 = i} .

A SMP is calledregular if there is only a finite number of transitions possible in a finite

time period. The SMP isirreducibleif each state can be reached from any other state; the

states are said to communicate with each other in this case. Astatej is calledrecurrent

if the process returns to this statej in a spell less than infinity and it is calledtransient

otherwise (if it never returns). A state is denoted aspositive recurrentif it is recurrent

and the expected returning time to statei, given the process started ini, is less than

infinity. For a SMP, a recurrent statei is calledaperiodic if it is possible to visit this

state anytime.Periodicitywith periodd is given if a statei can only be visited at positive

multiple integers ofd, d > 1, see Ross (1996). Therefore, aperiodicity actually means

d = 1. The initial distribution vector of statesa = [ai] reports the probability that the

state of the system isi at the beginning,ai = P {X (0) = i}. Finally, a regular SMP is

fully specified by the initial distribution of statesa and the kernelG (x) = [Gij (x)].

Example. In standard labor market models with two states, all states in the SMP

communicate. Furthermore, the SMP is regular, positive recurrent, irreducible, and fi-

nally, aperiodic. It is intuitive why: the stateunemploymentis accessible from the state

employmentand vice versa. Hence, the states communicate and the SMP is irreducible.

The SMP is regular because the probability of very short durations is less than one. This
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means that finding a job or loosing it normally needs some time. It is positive recurrent

because the expected ‘revisiting’ duration for an unemployed or an employed is less than

infinity. The SMP is aperiodic because obviouslyd = 1 in this two-state process.

Deriving the conditional distribution of the states in a SMP{X (t) , t ≥ 0} at a fixed

t ≥ 0 requires something like the Chapman-Kolmogorov equations,but for SMPs. In

doing so, the renewal argument is used to develop integral equations, which is postponed

to the next subsection. The numeric methods described in theremainder of this chapter

then deal with the computation of these integral equations.

For positive recurrent, irreducible, and aperiodic SMPs, the limiting probability of

being in statej when starting in statei is independent ofi,

pj = lim
t→∞

P {X (t) = j|X (0) = i} =
πjηj

∑∞
k=0 πkµk

, (4.3)

whereπ is a solution toπ = πG (∞) andηk is the expected duration in statek, k =

0, 1, 2, ..., see Kulkarni (1995); also a proof is provided there.

For a labor market model with the two states1 (employment) and0 (unemployment),

the kernel is given byG10 (∞) = 1 andG01 (∞) = 1, henceπ = (1, 1) satisfies the

equationπ = πG (∞). Therefore, equation (4.3) becomesp0 = η0

η0+η1

. The limiting

probability of being unemployed is given by the expected duration of the state unem-

ployment divided by the sum of the expected duration in the two states unemployment

and employment. According to Cox (1962), this holds for any distribution.

Consequently, the limiting distribution in a two-state labor market model, with duration-

dependent transition ratesµ(.) andλ(.), becomes5

p0 =

∫∞

0
exp

{
−
∫ x

0
µ (v) dv

}
dx

∫∞

0
exp

{
−
∫ x

0
λ (v) dv

}
dx+

∫∞

0
exp

{
−
∫ x

0
µ (v) dv

}
dx
, (4.4)

p1 = 1 − p0.

Equipped with this intuitive, but also formal classification of Semi-Markov processes,

the next subsection describes the derivation of the transition probabilities with the integral

equations mentioned above.

4.2.3 Transition probabilities of Semi-Markov processes

Now we turn to the transition probabilities of SMPs. This subsection states the general

notation and the mathematical basics used throughout this chapter when computing the

conditional transition probabilities of a SMP. Pyke (1961a) and Pyke (1961b) are the

5See appendix chapter B.1 for a derivation.
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seminal articles mentioned in nearly every work about Semi-Markov processes. A very

accessible presentation embedded in a general introduction to stochastic processes can

be found in Kulkarni (1995).

However, before deriving the equation for the distributionof states, some more def-

initions and clarifications are needed. LetYn denote the state of a system after thenth

transition and let this state bei. Let the point in time of thenth transition be denoted by

Sn.

The conditional probability of going from statei to statej in a time interval ofx or

shorter is given by

Qij (x) ≡ P {Yn+1 = j, Sn+1 − Sn ≤ x|Yn = i} .

Besides the fact that it might not be 1 forx → ∞, Qij (x) features all properties of a

distribution function, compare Kulkarni (1995). Specifically, Qij (x) is non-decreasing

in x, dQij(x)

dx
≥ 0.

Example. A worker jumps between the two labor market states with the arrival rates

being either constant or duration-dependent. As already mentioned earlier, the process is

a CTMC in the first case and a SMP in the latter. Such a process is also called alternating

renewal process because it alternates between these two states. The probabilities that a

jump fromi to j occurs in a time period shorter or equal tox is given for these alternative

cases by

Q10 (x) =

{

1 − e−λx

1 − e−
∫ x

0
λ(y)dy

}

for

{

constantλ

duration-dependentλ (y)
, (4.5)

Q01 (x) =

{

1 − e−µx

1 − e−
∫ x

0
µ(y)dy

}

for

{

constantµ

duration-dependentµ (y)
,

assuming that the starting point of the time interval is0 and the endpoint isx. Due to the

homogeneity of the SMP, the probabilities and distributions only depend on the interval

lengthx and not on where the interval is situated on the time axis.6 The probabilities of

remaining in a given state, the duration distribution, for acertain amount of timex are

given in the duration-dependent case by

Q11 (x) = e−
∫ x

0
λ(y)dy, Q00 (x) = e−

∫ x

0
µ(y)dy. (4.6)

The probability thatany transition takes place in the spellx is given by summing up

the leaving probabilities for each possible statej, Qi (x) = Σj 6=iQij (x), not taking into

6So, it holds thatQik (x) = Qik (τ |t) whereτ = t + x.
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Figure 4.2: Three possible ways of starting in state1 at t = 0 and ending up in state1 a

time periodx later.

account transitions fromi to i. In a process with two states only, this becomes

Q1 (x) = Q10 (x) , Q0 (x) = Q01 (x) . (4.7)

Having done this preparation, we can now compute the probability of being in statej

atx, conditioned on starting from statei today. There is a ‘black box’ on the way fromi

to j: we know that the system is in statei today and in statej a periodx later, but neither

do we know when this transition occurs nor whether it occurs directly or via other states.

Consequently, all alternative ways of starting ini at t = 0 and ending up inj at x have

to be taken into account. Figure 4.2 illustrates some possibilities for a continuous-time

SMP with two states to start in statei and to end up in statei a time periodx later.

Translating all potential transitions that could occur in that ‘black box’ for a multi-

state process into mathematics gives the following expression:

pij (x) = δij [1 −Qi (x)] + Σk 6=i

∫ x

0

Qik (x− v) dpkj (v)

= δij [1 −Qi (x)] + Σk 6=i

∫ x

0

dQik (v) pkj (x− v) . (4.8)

Integral equations like equation (4.8) are Volterra equations of the first and second kind,

see Polyanin and Manzhirov (1998), for example. Equation system (4.8) gives the prob-
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ability that the process starting ini will be in j by x, see e.g. Kulkarni (1995) for a proof.

The integral
∫ x

0
Qik (x− v) dpkj (v) is called the convolution ofQik (.) andpkj (.), which

is denoted byQik ∗pkj (x). In the transition to the second line of equation (4.8), the com-

mutativity of the convolution is used,Qik ∗ pkj (x) = pkj ∗Qik (x).

The interpretation of equation (4.8) is as follows: the firstpart of the right-hand side is

the probability that the system, being in statei, never leaves statei until the end of the

periodx. In this case,i = j andδij = 1, so1 −Qi (x) is the survival probability in state

i. This case corresponds to the upper subfigure of figure 4.2. Ifj 6= i, thenδij = 0.

The second part of the right-hand side of equation (4.8) collects all cases in which the

transition fromi to j occurs via another statek 6= i, applying the renewal argument. First,

the probability that the process stays in statei for a period of lengthv and then passes to

statek is considered, captured byQik (v). Passing to this new statek can be interpreted as

a renewal of the process because the expected behavior of theprocess from then on is the

same as whenever the process entersk. Hence, the probability that the process which is

in statek atv will be in statej atx has to be taken into account, captured bypkj (x− v).

As the transition fromi to k could occur anytime between0 andx, all possible transition

times have to be covered by the integration overv. The cases, in which the transition

occurred via other states is illustrated fori = j in the two lower subfigures of figure 4.2.

Equation (4.8) can be rewritten, provided thatQik (v) is once differentiable, as

pij (x) = δij [1 −Qi (x)] + Σk 6=i

∫ x

0

pkj (x− v)
dQik (v)

dv
dv. (4.9)

This equation is the origin for the following analysis basedon labor market applications.

As theQik are expected to be known and differentiable in economic applications, the

starting point here will be equation (4.9) rather than equation (4.8) without loss of gener-

ality.

4.3 Semi-Markov processes with two states

As stated earlier, this chapter picks the example of our labor market model from chapter

3. There are the two labor market statesunemployment(0) andemployment(1) and thus,

four transition probabilities for the future: an unemployed /employed person can either

be unemployed or employed at some future point after a spellx. Let these probabilities
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be denoted bypij (x). Writing them out in terms of the general equation (4.9) gives

p00 (x) = 1 −Q0 (x) +

∫ x

0

p10 (x− v)
dQ01 (v)

dv
dv, (4.10a)

p10 (x) =

∫ x

0

p00 (x− v)
dQ10 (v)

dv
dv, (4.10b)

p11 (x) = 1 −Q1 (x) +

∫ x

0

p01 (x− v)
dQ10 (v)

dv
dv, (4.10c)

p01 (x) =

∫ x

0

p11 (x− v)
dQ01 (v)

dv
dv. (4.10d)

In the remainder of this section, we first discuss a special case of a SMP, namely one

with constant arrival rates for both states. Since the SMP isalso a CTMC in this case, the

results for the probabilities from the SMP theory can be compared to the known results

from CTMCs. This model is then extended in the way of chapter 3, where there are

constant arrival rates in the state of employment and duration-dependent arrival rates in

the state of unemployment.

4.3.1 Computing transition probabilities for constant arrival rates

Assuming a continuous-time setup, where the transition rates from one state to the other

are constant, the well-known expressions for the transition probabilities of being either

unemployed or employed depending on the current state can bederived. Letpij (x) be

the probability that a system being in statei will be in statej at a spellx later. Starting

from the Chapman-Kolmogorov backward equations, a system ofdifferential equations

can be derived. The solution to this system gives the transition probabilities:

p00 (x) =
λ

µ+ λ
+

µ

µ+ λ
e−[µ+λ]x,

p10 (x) =
λ

µ+ λ
−

λ

µ+ λ
e−[µ+λ]x,

p11 (x) =
µ

µ+ λ
+

λ

µ+ λ
e−[µ+λ]x,

p01 (x) =
µ

µ+ λ
−

µ

µ+ λ
e−[µ+λ]x, (4.11)

see Ross (1996) or Kulkarni (1995), for example. In the limit as x → ∞, the second

terms of the probability equations approach zero. Hence, the limiting distribution does

not depend on the initial distribution of states, sop1 = p01 = p11 = µ

µ+λ
andp0 =

p10 = p00 = λ
µ+λ

. Since CTMCs are special cases of SMPs, we will now show that the

transition probabilities (4.11) are special cases of the more general equations (4.10) for

transition probabilities of SMPs.
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First, the derivative ofQ01 (v) is prepared,

dQ01 (v)

dv
= µe−µv. (4.12)

Inserting this into the transition probability equation (4.10) for SMPs yields

p01 (x) = µ

∫ x

0

p11 (x− v) e−µvdv.

From subsection 4.2.3, it is known that the convolution ofp11 andQ01 is commutative,

that means the convoluted functions and the arguments can beinterchanged. Applying

this gives

p01 (x) = µ

∫ x

0

p11 (v) e−µ[x−v]dv. (4.13)

Next, the time derivative of equation (4.13) with respect tox is computed using the

Leibniz rule for integral functions, compare Wälde (2008),

ṗ01 (x) = µ

[

p11 (x) − µ

∫ x

0

p11 (v) e−µ[x−v]dv

]

.

Finally, replacing the convolution byp01 (x) from equation (4.13) yields

ṗ01 (x) = µ [p11 (x) − p01 (x)] = µp11 (x) − µp01 (x) . (4.14)

This is the expected differential equation which can be derived as well from the Chapman-

Kolmogorov backward equations. For the remaining three states, the corresponding dif-

ferential equations can be determined in the same manner. Solving these differential

equations gives the probabilities (4.11). Hence, interpreting the CTMC as a SMP with

constant arrival rates leads to the same transition probabilities.

4.3.2 Computing transition probabilities for general arrival rates

From this subsection on, we use duration-dependent job arrival rates as given in our labor

market model.7

Having non-stationary job arrival rates, the derivatives according to equation (4.5) are

given by

dQ01 (v)

dv
= e−

∫ v

0
µ(y)dy d

dv

∫ v

0

µ (y) dy = e−
∫ v

0
µ(y)dyµ (v) ,

dQ10 (v)

dv
= e−

∫ v

0
λdy d

dv

∫ v

0

λdy = e−
∫ v

0
λdyλ.

7Extending the model additionally by a non-stationary job-to-unemployment transition rate is also pos-

sible and would not change the general proceeding.
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Together with equation (4.7) and the derivatives, the transition probabilities from equa-

tion (4.10) become

p00 (x) = e−
∫ x

0
µ(y)dy +

∫ v

0

p10 (x− v) e−
∫ v

0
µ(y)dyµ (v) dv, (4.15a)

p10 (x) =

∫ x

0

p00 (x− v) e−
∫ v

0
λdyλdv, (4.15b)

p11 (x) = e−
∫ x

0
λdy +

∫ x

0

p01 (x− v) e−
∫ v

0
λdyλdv, (4.15c)

p01 (x) =

∫ x

0

p11 (x− v) e−
∫ v

0
µ(y)dyµ (v) dv. (4.15d)

These four equations are central for deriving the transition probabilities of SMPs. Obvi-

ously, equations (4.15a) and (4.15b) as well as equations (4.15c) and (4.15d) are interde-

pendent. The equation forp01 (x) depends onp11 (x− v) and the equation forp11 (x), in

turn, depends onp01 (x− v). The transition probabilitiesp11 (x) andp01 (x) can be de-

termined first and then the transition probabilities for thecomplementary events,p10 (x)

andp00 (x), can be obtained immediately.8

One way to solve the probabilities analytically is the Laplace-Stieltjes transform,

compare Kulkarni (1995). The striking fact with respect to equations (4.15a)-(4.15d)

is that an analytical solution is not feasible in cases like our model because the job arrival

rate has no analytical solution. Therefore, the remainder of this chapter deals with the

numerical solution of the interdependent integral equations (4.15a)-(4.15d).

4.4 Numerical solution of the transition probabilities

In order to solve the transition probabilities at some pointin timex numerically, at least

two of the integrals in equations (4.15a)-(4.15d) have to betransformed into discrete

integration problems. To this end, the interval of lengthx is divided intoz discretization

steps first. The distance between subsequent steps, the stepwidth, ish = x/z and the end

point of the intervalx is represented byzh. Thus, equations (4.15a) and (4.15b) become

p00 (zh) = e−
∫ zh

0
µ(ih)d(ih)

︸ ︷︷ ︸

≡Q00(zh)

+

∫ zh

0

e−
∫ ih

0
µ(kh)d(kh)µ (ih) p10 (zh− ih)

︸ ︷︷ ︸

≡g(ih)

d (ih) (4.16)

8After having solved for two probabilities, the remaining two are the probabilities of the complementary

events and can be solved by subtracting the respective probability from 1. Thus, an unemployed today can

be unemployed atx, for which the probabilityp00 (x) can be computed. The complementary event for the

unemployed today would be occupying a job atx. As there are only the two possible statesunemployment

andemployment, the probability for the latter is given byp01 (x) = 1 − p00 (x).
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and

p10 (zh) =

∫ zh

0

e−
∫ ih

0
λd(kh)λp00 (zh− ih)

︸ ︷︷ ︸

≡f(ih)

d (ih) . (4.17)

In general and independently from the numerical integration method, the approximation

of the integral gets more precise the more steps are used. Thedrawback of having a better

precision with more steps is the prolonged computing time for the integrals.

Furthermore, a numerical integration method has to be chosen in order to approxi-

mate the area beneath the function. In this section, two numerical integration methods

are presented and compared in the context of the Semi-Markovtransition probability

problem. In subsection 4.4.1, the very basic rectangle integration method is introduced,

while subsection 4.4.2 deals with the trapeze integration.These rules can be subsumed

under the Newton-Cotes quadrature formulas. A general presentation can be found in

Judd (1998) as well as in Schatzman and Taylor (2002).

4.4.1 Rectangle approximation

This subsection describes the numerical solution of equations (4.15a) and (4.15b) by

using the rectangle approximation of integrals. As there exist several variations of the

rectangle approximation, the first step is to present the general idea of computing an

integral via rectangles as the basis of all variations. Then, one of the variations, the

algorithm using left rectangle integration, is discussed in detail.

The general setup

As the namerectangle approximationalready suggests, it consists of adding up the areas

of rectangles beneath a function, sayγ (.). The width of every rectangle is the step-width

h and the height is the function valueγ (ih) at the current position of the indexi. Hence,

the rectangle area is computed byh · γ (ih).

Possible variations of the rectangle method refer to the function valueγ (.), which

determines the area of the first rectangle. In literature, three methods are distinguished,

see Schatzman and Taylor (2002). Figure 4.3 illustrates thedifferent methods.

As for the right rectangle method, the first rectangle is the one with heightγ (0), hence

the area to the right of0 is computed. Consequently, the rectangles fromi = 0, ..., z − 1

are added. The left rectangle method begins with the rectangle of heightγ (1h) which

means that the area to the left of1h is considered. In this case, the rectangles from

i = 1,...,z are added. For the midpoint rule, the first rectangle taken isthe one with height

γ (0.5h), so the function value in the middle of each interval is used.From figure 4.3
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Figure 4.3: The three subfigures show the approximation of the area beneath the function

via rectangles and the function values used for the rectangles. The upper figure presents

the right rectangle method, the middle figure the left rectangle method, and the figure

below the midpoint rule.
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becomes clear why the rectangle method is a so-calledopen rule: none of the variations

uses both interval endpoints, compare Judd (1998).

In the following, the left rectangle rule is discussed in detail within the Semi-Markov

framework. The other two rules can be derived similarly.

Algorithm Left Rectangles

As mentioned above, the first function value needed for the left rectangle algorithm is the

one ati = 1. Hence, by using the left rectangle approximation andz discretization steps

the integral becomes
∫ x

0

γ (v) dv = hγ (1) + hγ (h) + hγ (2h) + ...+ hγ (zh) (4.18)

= h
z∑

i=1

γ (ih) ,

wherezh = x is the interval endpoint. Using the numerical integration equation (4.18),

the transition probabilities for Semi-Markov processes (4.15a) and (4.15b) become

p00 (zh) = e−h
∑z

i=1
µ(ih)

︸ ︷︷ ︸

≡Q00(zh)

+ h
z∑

i=1

e−h
∑i

k=1
µ(kh)µ (ih) p10 ([z − i]h)

︸ ︷︷ ︸

≡g(ih)

= Q00 (zh) + h

z∑

i=1

g (ih) (4.19)

and

p10 (zh) = h

z∑

i=1

e−h
∑i

k=1
λλp00 ([z − i]h)

︸ ︷︷ ︸

≡f(ih)

= h

z∑

i=1

f (ih) . (4.20)

Starting from the given initial valuesp10 (0) = 0 andp00 (0) = 1, the probabilities for

anyz can be computed successively, which is shown in the following algorithm.

• Initialization forz = 0

The initial valuesp00 (0) and p10 (0) can be deduced intuitively. If a worker is

unemployed today and no time goes by, there is no chance for him to become

employed. Consequently, the probability of staying unemployed is equal to one,

p00 (0) = 1. Equivalently, for an employed worker there is no risk of unemploy-

ment if no time goes by, which meansp10 (0) = 0. Therefore, the initialization for



4.4 Numerical solution of the transition probabilities 96

the transition probabilities is given by

p00 (0) = 1,

p10 (0) = 0.

• z = 1

Starting points are, like at the beginning of every step, thetransition probability

equations (4.19) and (4.20). Settingz = 1 yields

p00 (h) = Q00 (h) + hg (h)

= e−µ(h)h + he−µ(h)hµ (h) p10 (0)

and

p10 (h) = hf (h)

= hλe−λhp00 (0) .

The computation of the unknownsp10 (h) andp00 (h), givenp10 (0) andp00 (0), is

now straightforward.

• z = 2 and subsequent steps

Evaluating equations (4.19) and (4.20) forz = 2 and using the definitions of

Q11 (ih),Q00 (ih), g (ih), andf (ih) gives

p00 (2h) = Q00 (2h) + h
2∑

i=1

g (ih)

= e−h
∑

2

i=1
µ(ih) + h

2∑

i=1

e−h
∑i

k=1
µ(kh)µ (ih) p10 ([2 − i]h)

and

p10 (2h) = h
2∑

i=1

f (ih)

= hλ
2∑

i=1

e−h
∑i

k=1
λp00 ([2 − i]h) .

The further procedure forz > 2 is similar. In this way, the transition probabili-

ties within an interval can be computed step by step until theprobabilities for the

desired point in time are reached.
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Figure 4.4: When using the trapeze rule, the area beneath the function is determined by

adding up the area of the trapezes with step widthh as well as side lengthsγ (ih) and

γ ([i− 1]h).

4.4.2 Trapeze approximation

The second approximation rule discussed in this chapter is the trapeze rule. The integral

is determined via the sum of trapeze areas beneath the function. Intuitively, the trapeze

rule can be derived from the rectangle approximation by adding or subtracting triangles

resulting from chords through the end points of the intervals.

The general setup

When using the trapeze approach, there is no longer a differentiation between aright or

left method. As the rule uses both endpoints of the interval, it iscalled aclosed rule

according to Judd (1998). Figure 4.4 illustrates the trapeze approximation rule.

The trapezes taken for the approximation of the area are constructed by using the

width h and the lengthsγ ([i− 1]h) andγ (ih). As for the rectangle rule, all trapeze

areas in the interval are added up. Hence, an integral of a functionγ (.) becomes
∫ x

0

γ (v) dv =
1

2
h [γ (0) + γ (h)]+

1

2
h [γ (h) + γ (2h)]+ ...+

1

2
[γ ([z − 1]h) + γ (zh)] .

Recollection results in
∫ x

0

γ (v) dv = h

[
1

2
γ (0) + γ (h) + γ (2h) + ...+ γ ([z − 1]h) +

1

2
γ (zh)

]

=
1

2
hγ (0) + h

z−1∑

i=1

γ (ih) +
1

2
hγ (zh) . (4.21)

Also for this method, the endpoint of the intervalx = zh is reached afterz discretization

steps andv = ih is the time point of the current index positioni.
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In the following, the application of equation (4.21) for thecomputation of the transi-

tion probabilities (4.16) and (4.17) is described.

Algorithm

The general numerical integration equation (4.21) for the trapeze approximation can be

used to substitute the integrals in equations (4.16) and (4.17). The former becomes

p00 (zh) = Q00 (zh) +
1

2
hg (0) + h

z−1∑

i=1

g (ih) +
1

2
hg (zh) .

In addition top00 (zh), this equation contains a second unknown ing (0) = µ (0) p10 (zh),

namelyp10 (zh). Isolating the two unknowns gives

p00 (zh) −
1

2
hµ (0) p10 (zh)
︸ ︷︷ ︸

g(0)

= Q00 (zh) + h
z−1∑

i=1

g (ih) +
1

2
hg (zh) . (4.22)

The full equation without the short-cut functions is written out in the appendix chapter

B.2. The second equation (4.17) needs a discrete counterpartfor the trapeze case, too.

The procedure is equivalent, so after replacing the integrals according to equation (4.21),

the probability for the transition from employment to unemployment reads

p10 (zh) =
1

2
hf (0) + h

z−1∑

i=1

f (ih) +
1

2
hf (zh) .

This equation also has two unknowns,p10 (zh) andp00 (zh), because the left expression

on the right-hand side,f (0) = λp00 (zh), contains the unknownp00 (zh). Again, the

final step is the isolation of both unknowns,

p10 (zh) −
1

2
hλp00 (zh)
︸ ︷︷ ︸

f(0)

= h
z−1∑

i=1

f (ih) +
1

2
hf (zh) . (4.23)

For the full version of this equation, see B.2 of the appendix.Finally, the two un-

knownsp10 (zh) andp00 (zh) from equations (4.22) and (4.23) can be determined since

the p10 (zh− ih) andp00 (zh− ih), i = 1, ..., z, are given from previous calculations.

In other words, by starting fromp10 (0) = 0 andp00 (0) = 1, all p (zh) can be solved

successively. Equations (4.22) and (4.23) are the startingpoints of all algorithm steps,

but the initialization. The algorithm steps forz = 0, z = 1, andz = 2 are presented in

the following.
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• Initialization forz = 0

The initial transition probabilities from unemployment tounemployment and from

employment to unemployment are given by

p00 (0) = 1

and

p10 (0) = 0,

respectively, for the same reason as in subsection 4.4.1 forthe rectangle integration

method.

• z = 1

After the initialization, this is the first computation step. The basis of all compu-

tation steps are equations (4.22) and (4.23). Settingz = 1 in the former and using

the definitions ofQ00 (.) andg (.) from (4.16) yields the transition probability from

unemployment to unemployment ath,

p00 (h) −
1

2
hµ (0) p10 (h)
︸ ︷︷ ︸

g(0)

= Q00 (h) +
1

2
hQ00 (h)µ (h) p10 (0)
︸ ︷︷ ︸

g(h)

. (4.24)

The transition probability from employment to unemployment at h is determined

in the same manner, usingf (.) from equation (4.17). Settingz = 1 in equation

(4.23) results in

p10 (h) −
1

2
hλp00 (h)
︸ ︷︷ ︸

f(0)

=
1

2
he−λhλp00 (0)
︸ ︷︷ ︸

f(h)

. (4.25)

Equations (4.24) and (4.25) are the first two equations with the first two unknowns

p00 (h) andp10 (h). The solution is now straightforward.

• z = 2 and subsequent steps

The next step is to go on withz = 2 and to computep00 (2h) as well asp10 (2h)

given the results from all previous steps. Equations (4.22)and (4.23) become

p00 (2h) −
1

2
hµ (0) p10 (2h)
︸ ︷︷ ︸

g(0)

= Q00 (2h) + hQ00 (h)µ (h) p10 (h)
︸ ︷︷ ︸

g(h)

+
1

2
hQ00 (2h)µ (2h) p10 (0)
︸ ︷︷ ︸

g(2h)
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and

p10 (2h) −
1

2
hλp00 (2h)
︸ ︷︷ ︸

f(0)

= he−λhλp00 (h)
︸ ︷︷ ︸

f(h)

+
1

2
he−λ2hλp00 (0)
︸ ︷︷ ︸

f(2h)

,

respectively.

The only two unknowns in step 2 arep10 (2h) andp00 (2h) on the left-hand side

becausep10 (0) andp00 (0) are known from the initialization andp10 (h) andp00 (h)

from the first step. So also this equation system can be solvedfor the probabilities

atx = 2h.

The proceeding for the subsequent steps withz = 3, ... equivalently starts from

equations (4.22) and (4.23). The mechanism is always the same: thep00 (zh) and

p10 (zh) are calculated using thep00 (zh− ih) andp10 (zh− ih), i = 1, ..., z, from

the previous steps.

After the theoretical description of possible numerical solution methods, the next

section shows the computational results for specific numerical examples.

4.5 Numerical results

Having learned two alternatives of determining transitionprobabilities in the previous

section, this section focuses on how both solutions performwhen applying them to spe-

cific labor market models.9

First, the methods of numerical integration discussed in chapter 4.4, the rectangle and

the trapeze method, are compared to the analytically computable transition probabilities

in the case of constant arrival rates as given by equations (4.11). In general, it is clear

that the trapeze method will perform better than the rectangle method when using the

same step width and step number. However, an important question is how much better

the trapeze method is when employing it for the solution of our labor market model, con-

sidering that the trapeze method is more complex and will need more computation time,

consequently. Furthermore, the limiting distribution as derived by equation (4.4) will be

tested. Thus, the analytical solution serves as a benchmarkfor the numerical methods in

the case of constant transition rates.

Second, the probabilities for duration-dependent arrivalrates are computed with both

numerical methods. As there is no longer an analytical solution available in cases like

our economic model of chapter 3, the two solutions can only beanalyzed independently.

9The algorithm of the solution procedure is set up in Matlab. The code is available on the enclosed CD.
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However, the limiting distribution can be computed for Semi-Markov processes and, in

this way, at least the convergence of both numerical solutions can be evaluated.

4.5.1 Constant arrival rates - convergence to the analytical solution

In order to test the convergence of the transition probabilities computed via the numerical

algorithms, constant arrival rates are used. In this special case, the SMP is a CTMC, for

which the analytical solution of the transition probabilities is known, see equations (4.11)

in subsection 4.3.1. The parameters used for this analysis are taken from Shimer (2005).

The monthly values areµ = 0.45 for the job arrival rate andλ = 0.034 for the job

separation rate. The interval endpoint isx = 500 months. The limiting distribution is

then given bypA
1 = µ

µ+λ
= 0.93 andpA

0 = λ
µ+λ

= 0.07 according to subsection 4.3.1.

• Comparison of graphs

Figure 4.5 shows the evolution of the transition probabilities for the analytical solution

compared to the numerical solution of therectanglemethod. Each subfigure presents the

probabilities for different step numbers. The probabilityfor the transition from initial

unemployment to unemployment is1 for t = 0, the probability for the transition from

initial employment to unemployment is0 ast = 0.10 The analytical solution reaches the

limiting distribution at aboutt = 20 months and the two analytical curves can no longer

be distinguished from then on. The rectangle probabilitiesdo not seem to converge at all

for the displayed step numbers. For250 steps, the numerical solution using the rectangle

method clearly underestimates the probabilities fort ≥ 25, see the upper subfigure. At

the endpoint of the figure att = 150, the numerically approximated probabilities are

nearly zero. For2, 000 steps, there is still underestimation of the analytical probabilities,

but the magnitude decreases and the difference between the two computation methods at

t = 150 is much smaller than before.

10See initialization step forz = 0 in the previous section for the explanation.
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Figure 4.5: Transition probabilities over time for the analytical solution and the rectangle

method. The upper figure shows the solution for250 steps and the figure at the bottom

for 2, 000 steps.
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Figure 4.6: Transition probabilities over time for the analytical solution and the trapeze

method. The upper figure shows the solution for250 steps and the figure at the bottom

for 2, 000 steps.

Figure 4.6 shows the transition probabilities for the analytical solution compared to

the numerical solution of thetrapezeapproximation, again for different step numbers.

Convergence is much better than for the rectangle solution. Already for2, 000 steps,

the trapeze probabilities approach the same limiting valueas the analytical solution. As

before, the probability for the transition from initial unemployment to unemployment at

t = 0 is 1, whereas the probability for the transition from initial employment to unem-

ployment att = 0 is 0. The upper subfigure in figure 4.6 shows the curves for250 steps.

After the first20 months, there is a monotonically increasing overestimation. The trapeze
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Figure 4.7: Transition probabilities for the analytical solution and the rectangle solution

ast → 500 for different step numbers. The upper figures show the interval [475, 500],

the bottom figures show the interval[499, 500].

solution is obviously still much better than the rectangle method described above. The

lower subfigure shows the probability evolution for2, 000 steps. The improvement from

250 steps to2, 000 steps is large, especially fromt = 20 onwards. For this step number,

there is nearly no difference between the curves of the analytical solutions and the curves

of the numerical trapeze solutions visible. After this overview of the probability evolu-

tion, some more detailed figures on the behavior ast→ 500 will be shown.

Figure 4.7 shows the probabilities for the transitions fromunemployment to unem-

ployment and from employment to unemployment both for the analytical solution and

therectangleapproximation zoomed in near the endpoint of the interval. Now, the range

of the underestimation of the analytical solution by the rectangle approximation becomes

better visible. Clearly, the numerical solution approachesthe analytical solution as the

step number increases with the errors getting smaller for increasing step numbers.
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Figure 4.8: Transition probabilities for the analytical solution and the trapeze solution as

t→ 500, again for different step numbers. The upper figures show theinterval[475, 500],

the bottom figures show the interval[499, 500].

Figure 4.8 shows the corresponding probabilities for thetrapezeapproximation com-

pared to the analytical solution. Also these figures verify that, for a bigger step number,

the numerical transition probabilities perform better as approximations of the analytical

solution. Furthermore, it becomes obvious that the trapezeapproximation method over-

estimates the analytical solution, but, unlike for the rectangle probabilities, already the

solutions for2, 000 steps perform quite good. Having an equivalently good approxima-

tion in the rectangle case would require 8,000 or more computation steps.

• Comparison by computational results

Table 4.1 and table 4.2 present the computational results for different step numbers

and the three methods (analytical, rectangle, trapeze). The solutions and errors of both

numerical integration methods are compared to the analytical solution at different points

of the interval. While in the former table the results for the transition probabilities from
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250 steps 500 steps 2,000 steps

Value Error Value Error Value Error

pA
00 0.070 - 0.070 - 0.070 -

1/5 pR
00 0.019 -0.051 0.035 -0.035 0.058 -0.018

pT
00 0.097 +0.027 0.076 +0.006 0.071 +0.001

pA
00 0.070 - 0.070 - 0.070 -

1/2 pR
00 0.003 -0.067 0.012 -0.058 0.044 -0.026

pT
00 0.134 +0.057 0.083 +0.013 0.071 +0.001

pA
00 0.070 - 0.070 - 0.070 -

End PR
00 0.000 -0.07 0.002 -0.068 0.028 -0.042

pT
00 0.228 +0.158 0.095 +0.025 0.072 +0.002

4,000 steps 8,000 steps 16,000 steps

Value Error Value Error Value Error

pA
00 0.070 - 0.070 - 0.070 -

1/5 pR
00 0.064 -0.006 0.067 -0.003 0.069 -0.001

pT
00 0.070 - 0.070 - 0.070 -

pA
00 0.070 - 0.070 - 0.070 -

1/2 pR
00 0.055 -0.015 0.062 -0.008 0.066 -0.004

pT
00 0.070 - 0.070 - 0.070 -

pA
00 0.070 - 0.070 - 0.070 -

End PR
00 0.044 -0.026 0.055 -0.015 0.062 -0.008

pT
00 0.071 +0.001 0.070 - 0.070 -

Table 4.1: Probabilities for the transition from unemployment to unemploymentp00(.)

by ti, wheret1 = 1/5 · x = 100, t2 = 1/2 · x = 250, andt3 = x = 500.

unemployment to unemployment,p00 (t), are recorded, the latter shows the transition

probabilities from employment to unemployment,p10 (t).11

The columns present the probabilities for different step numbers, the rows show the prob-

abilities for the three computation methods analytical, rectangle, and trapeze for different

points in the interval[0, 500]. First, the probabilities at1/5 of the interval,t1 = 100, then

the probabilities after half of the interval att2 = 250, and finally, the probabilities at the

endpointx = 500 are compared for the three methods.

Table 4.1 shows the probabilities for the transition from initial unemployment to un-

employment,p00 (.). For250 (500) steps and after1/5 of the time, the rectangle solution

underestimates the analytical solution in a range of73% (50%), whereas the trapeze so-

lution overestimates the analytical solution in a range of39% (8.6%). So att1 = 100, the

11Note that the probabilities for the complementary events can easily be determined viap11 (t) = 1 −

p10 (t) andp01 (t) = 1 − p00 (t), respectively.
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trapeze solution performs much better than the rectangle solution. With increasing step

numbers, both approximated probabilities continuously get better att1 = 100 with the

trapeze solution being much better than the rectangle solution. Already at4, 000 steps,

the deviation of the trapeze probability from the analytical one is0% within the chosen

accuracy of three decimal places. At the interval endpointx = 500 with 250 (500) steps,

both probabilities are very bad estimates for the analytical probability with an error of

100% (33%) or higher. As expected, the error decreases with increasing step numbers,

so at the interval endpoint with8, 000 steps, there is no longer a significant error for the

trapeze solution. The best result for the rectangle solution at the endpointx = 500 with

16, 000 steps still delivers an error of10%, which is disproportionatly high given the re-

quired amount of computation effort. So in order to get results for the rectangle method,

which are equally good like for the trapeze method with2, 000 steps requires16, 000

steps or more.

In the analytic case, convergence is reached at about20 months. Using adequate step

numbers, it also takes both approximation methods around20 months until convergence

to the limiting distribution.

Table 4.2 shows the probabilities for the transition from initial employment to un-

employment,p10 (.). For 250 (500) steps and after1/5 of the time, the underestimation

by the rectangle solution is not as big as for the corresponding p00(1/5) probabilities

with the error being about57% (39%). The trapeze solution overestimates the analytical

solution in a range of31% (7%). So att1 = 100, the trapeze solution again performs

much better than the rectangle solution. With increasing step numbers, both approxi-

mated probabilities continuously get better att1 = 100 as it has already been the case

for thep00(.) probabilities. This holds for all considered points of timein the interval:

starting from the unacceptable250 and500 step cases, the results at all observed interval

points get better, the more steps are used for the calculation. Again, the results for the

trapeze method and2, 000 steps are better than the results for the rectangle method with

16, 000 steps.

• Convergence with respect to the limiting distribution

The limiting distribution of the SMP can be determined usingequation (4.4). How-

ever, the integrals cannot be evaluated analytically as soon as there is no analytic so-

lution for µ (.). Hence, also for the limiting distribution, the accuracy ofthe different

numerical integration methods is evaluated. The analytical limiting distribution values

arepA
1 = µ

µ+λ
= 0.93 andpA

0 = λ
µ+λ

= 0.07 according to equation (4.1). For both

integration methods, the computed values of the limiting distribution can be taken from
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500 steps 1,000 steps 2,000 steps

Value Error Value Error Value Error

pA
10 0.070 - 0.070 - 0.070 -

1/5 pR
10 0.030 -0.04 0.043 -0.027 0.061 -0.009

pT
10 0.092 +0.022 0.075 +0.005 0.071 +0.001

pA
10 0.070 - 0.070 - 0.070 -

1/2 pR
10 0.004 -0.066 0.015 -0.055 0.046 -0.024

pT
10 0.126 +0.056 0.081 +0.011 0.071 +0.001

pA
10 0.070 - 0.070 - 0.070 -

End pR
10 0.000 -0.07 0.003 -0.067 0.029 -0.041

pT
10 0.215 +0.145 0.093 +0.023 0.071 +0.001

4,000 steps 8,000 steps 16,000 steps

Value Error Value Error Value Error

pA
10 0.070 - 0.070 - 0.070 -

1/5 pR
10 0.066 -0.004 0.068 -0.002 0.069 -0.001

pT
10 0.070 - 0.070 - 0.070 -

pA
10 0.070 - 0.070 - 0.070 -

1/2 pR
10 0.057 -0.013 0.063 -0.007 0.067 -0.003

pT
10 0.070 - 0.070 - 0.070 -

pA
10 0.070 - 0.070 - 0.070 -

End pR
10 0.045 -0.025 0.056 -0.014 0.063 -0.007

pT
10 0.071 +0.001 0.070 - 0.070 -

Table 4.2: Probabilities for the transition from employment to unemploymentp10(.) by

ti, wheret1 = 1/5 · x = 100, t2 = 1/2 · x = 250, andt3 = x = 500.
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pR
0 pT

0

250 steps 0.046 0.075

500 steps 0.057 0.071

1,000 steps 0.064 0.071

2,000 steps 0.067 0.070

4,000 steps 0.069 0.070

8,000 steps 0.069 0.070

16,000 steps 0.070 0.070

pA
0 = 0.070

Table 4.3: Limiting probabilitiesp0, computed via the two numerical integration meth-

ods at different step numbers. The last line shows the analytical value. The remaining

probability of the distribution can be calculated byp1 = 1 − p0.

table 4.3. Besides the numerical integration method, there is now a second source of in-

exactness, namely the approximation of infinity by500. However, as the trapeze method

delivers very good estimates of the limiting distribution already for smaller time values,

approximating infinity by500 appears to be reasonable when computing the expectation.

All in all, the trapeze method is also for the limiting distribution precise enough given

our purpose: using2, 000 steps already results in an error of0% for three decimals pre-

ciseness, while the rectangle method still needs16, 000 steps.

In summary, the trapeze solution performs much better as an approximation for the

analytically computed CTMC transition probabilities and the limiting distribution than

the rectangle method for the given labor market framework. This better exactness comes

along with an extended computation effort since the trapezemethod is more complex.

However, the increased computation effort due to the highercomplexity can be reduced

again: the trapeze method requires less steps in order to reach a given accuracy. While

for our purposes,2, 000 steps prove to be exact enough when using the trapeze method,

we would need16, 000 steps or more to reach acceptable results for the rectangle method.

Altogether, the choice of the integration method should be made depending on the com-

plexity and the scope of the underlying project.

4.5.2 Duration-dependent arrival rates

In this subsection, the transition probabilities in a setupwith duration-dependent arrival

rates for jobsµ (.) and constant separation ratesλ are computed. Theµ (.) are taken from
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pR
00 (.) pT

00 (.) pR
10 (.) pT

10 (.)

100 0.178 0.179 0.163 0.163

250 0.165 0.167 0.166 0.167

500 0.162 0.167 0.163 0.167

Table 4.4: Transition probabilities for duration-dependent transition rates at different

points in time for2, 000 steps.

our labor market model of chapter 3. The parameters used areλ = 0.0098, 2, 000 steps,

and again,500 as the interval endpoint. It is no longer possible to comparethe numerical

solutions to analytical solutions because an analytical solution is no longer available.

However, the evolution of both methods can still be considered and discussed, as well as

the convergence to the limiting probabilities.

• Evolution ofpij (t) for increasingt using rectangle and trapeze approximation

Figure 4.9 shows the evolution of the transition probabilities over time using2, 000 steps.

The trapeze approximation approaches a limiting value of about0.167, while the rectan-

gle probabilities slightly keep decreasing. Table 4.4 shows some selected values.

As there is no longer an analytical benchmark for the probabilities, the next step is to

compute the limiting distributions by the two numerical integration methods.

• Convergence with respect to the limiting distribution

Using equation (4.4) with the two numerical integration methods and approximating in-

finity by 500 gives estimates of the limiting distribution for each method. For the rectan-

gle method, it is given by

pR
0 = 0.1683 , pR

1 = 0.8317, (4.26)

while the trapeze method yields

pT
0 = 0.1684 , pT

1 = 0.8316. (4.27)

These values are quite similar and they can be compared to thelimiting values from

above. For2, 000 steps, the trapeze solution performs again better, as can beseen from

table 4.4. The trapeze solution att = 500 of about0.167 is nearer to both the trapeze

limit of 0.1684 and the rectangle limit of0.1683 than the rectangle solution att = 500.

This result is in accordance with the findings from the previous subsection.
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Figure 4.9: Transition probabilities of the labor market model with duration-dependent

job arrival rates in the interval[0, 180] (upper subfigure) and in the interval[485, 500]

(lower subfigure) for2, 000 steps.
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4.6 Conclusion

The use of Semi-Markov processes allows a more realistic description of behavior or

states in economic modeling. In labor market theory, duration-dependent transition rates

account for microeconomic reactions of individuals over the unemployment spell due

to incentive effects of non-stationary benefit schemes, forexample. This chapter is de-

voted to the application of Semi-Markov processes in this area, especially with respect

to the derivation of the conditional and unconditional distribution of labor market states.

To this end, a basic introduction to Semi-Markov theory is given first. Then, we show

how to determine the transition probabilities between labor market states and the limiting

distribution of states by means of the labor market model from chapter 3, where a Semi-

Markov structure appears in the setup. Since the calculation requires the application of

numerical integration methods, two selected methods, the rectangle and the trapeze ap-

proximation, are introduced and compared with respect to the accuracy of their numerical

results for different step numbers.

Based on a specific labor market example and with constant arrival rates, a step width

of about1/4 appears to be accurate enough for precise results when usingthe trapeze

rule. For the rectangle method, results are equally acceptable at a step width not more

than1/32. Regarding the limiting distribution, the trapeze method delivers a very good

approximation already at step width1/4 with the error being0% within the chosen pre-

ciseness. Also here, the rectangle method requires a much finer step width.

For duration-dependent arrival rates, the transition rates are taken from our labor mar-

ket model of chapter 3. Also in this case, the transition probabilities of both numerical

integration methods approach a limiting value. Again, the trapeze method for the tran-

sition probabilities atx = 500 converge better to the numerical limiting probabilities

computed by both the trapeze method and the rectangle method.

Altogether, the trapeze method is a much more precise methodat much smaller step

numbers and, therefore, provides higher computation efficiency. Hence, for the transition

probabilities of our labor market model it is reasonable to prefer this slightly complexer

method over the rectangle method while using less steps.




