This 1s chapter 4 ot the dissertation “Lessons Learned From Germany’s 2001-2006 Labor Market Retorms"
by Irene Schumm, defended in December 2009 at the University of Wirzburg. Ch. 4.4.2 describes in
detail how the numerical solution of the Volterra equations in Launov and Walde was obtained.

Chapter 4

Semi-Markov processes in labor market
theory

4.1 Introduction and underlying setup

Semi-Markov processes are, like all stochastic processadels of systems or behavior.
As extensions of Markov processes and renewal processes;Makov processes are
widely applied and hence, an important methodology for inge Semi-Markov pro-
cesses are used in computer science and engineering, e€geumg theory and server
models, see Cohen (1982). In finance, for example, creditgand reliability models
are based upon Semi-Markov theory like in D’Amico et al. (20@ther applications in
business administration are operations research likebel@md Heyman (2003), as well
as manpower models as described in Mehlman (1979). MoreBeeni-Markov mod-
els are employed in sociology or socioeconomics, see Mi¥4) for a model of the
marriage market. In biology and medicine, Semi-Markov peses are used for progno-
sis and the evolution of diseases, see Beck and Pauker (1888uoher et al. (2005).
For demographic questions, models of disability or feytilsemi-Markov processes are
employed, too, see Hoem (1972).

Consequently, Semi-Markov processes are interdiscipliim@portant and, of course,
also economics has discovered the usefulness for modebngs. Already Markov pro-
cesses, which can be seen as a special case of Semi-Markespes, are widely used to
describe the different states of an economy or an individDapending on the currently
occupied state only, there are different transition radesther states. Possible applica-
tions of Markov chains in economics are standard matchindetsoof the labor market
as described in Pissarides (2000) or money demand modelmlikiyotaki and Wright
(1993). In this chapter, we will focus on the former ones asniethods presented build
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the background for the numerical solution of our labor markedel in chapter 3. Typ-
ically, the possible states of an individual in the labor kedrareunemploymenor em-
ploymentand the transitions between these states are describedrkgWaocesses. For
simplification, most of the models in literature take theasition rates between the labor
market states to be constant, see the standard matchingisd®issarides (2000), Pis-
sarides (1985), Mortensen and Pissarides (1994), for eleaimpRogerson et al. (2005)
for an overview. This simplification may be appropriate faanmy questions if incentive
effects of labor market institutions can be neglected. Rbemapplications, however,
this assumption needs generalization. When the behaviodoiduals and the incentive
effects of unemployment insurance systems are to be amhlyae example, station-
ary job arrival rates over the unemployment spell are nodomgalistic, see Mortensen
(1977) amongst others. In fact, it is plausible that thevatniate of jobs exhibits true
duration dependence. Reasons for this can be found in sefiochreactions due to
non-stationary benefits or stigmas attached to or percdiyeldng-term unemployed.
Empirical evidence with respect to non-stationary hazatelscan be found in Heckman
and Borjas (1980), Meyer (1990), or van den Berg and van Oui@4j]1%or instance.
However, models considering duration-dependent hazéed eae typically restricted to
analyze microeconomic behavior only and thus, the SemkMastructure is negligible
as the first order condition for optimal behavior is una#elct Therefore in chapter 3,
a full equilibrium labor market model is built up with noratibnary exit rates out of
unemployment and the parameters of the model are estimatedusally.

Allowing for duration-dependent transition rates has radtiogical consequences
regarding the state distribution of individuals. Analglisolutions for transition proba-
bilities and distributions are no longer feasible for suatdels having non-analytic and
non-stationary transition rates and numerical solutiothoas are required. Thus, the
purpose of this chapter is twofold. First, an accurate, biuitive definition and clas-
sification of Semi-Markov processes among the family of lséstic processes will be
given, emphasizing the application to labor market mod&éond, it provides a recipe
of how to solve for the transition probabilities of Semi-Mav processes, as well as the
description of the limiting behavior.

In a first step, this chapter presents the Semi-Markov th&drg properties and tran-
sition probabilities, as well as the limiting behavior aiscdissed on the basis of Pyke
(1961a) and Pyke (1961b), Kulkarni (1995), and Ross (1996)léAte transition proba-
bilities of continuous-time Markov chains are computeshgshe Chapman-Kolmogorov
equations, which can be solved analytically, for Semi-Mangrocesses, the correspond-

IFor a discussion of non-stationary hazard rates and pessibirces, see subsection 3.2.2.
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ing probabilities are based on the renewal argument ancobatron theory. An analyt-
ical solution is very difficult in this case and impossible the setup of chapter 3, so
the determination of the transition probabilities and @& fiimiting probabilities is about
numerical solution methods and it makes sense to deal wipecifsc example. Consid-
ering the economic model of chapter 3, there exist two graupkse labor market like
in the standard model: the unemployed and the employed wrKenis makes things
as simple as possible, but clearly shows the solution appraathe same time. The
job of an employed worker is destroyed at an exogenous deparate A and so the
waiting time until job destruction is exponentially diguted with parametex. An un-
employed job seeker with unemployment spedlets new offers at rate (¢ (s) 0,7 (s)),
whereg (s) is the job search effort of the unemployed with spel is the labor market
tightness, and (s) is an exogenous spell effectHaving an unemployment insurance
system with non-stationary benefits, it makes sense to asthahan unemployed indi-
vidual adjusts his search effort over the spell. With insmneg unemployment duration,
for example, the lower benefits of long-term unemployed geser. Thus, it is plausible
that effort increases before long-term unemployment ibzeé Assuming that the job
arrival rateu (¢ (s) 8,7 (s)) increases with search effort, this partial effect wouldllea
an increasing job arrival rate. The duration-dependerit sffect 7 (s) catches remain-
ing duration-dependent factors, which may affect the jolvarrate. This partial effect
is discussed in chapter 3 in detalil, where it leads to a detrggob arrival rate for long-
term unemployed.

In this chapter, however, we focus on the pure duration dégrere and not on its sources.
Therefore, we neglect all other arguments band reduce the notation {o(s) for sim-
plification.

In chapter 3, the steady state behavior of the model econs@ydlyzed. Using the
optimal search effort of an unemployed over the unemployrseell, we derive the den-
sities for the duration in both states. With these densitiesparameters of the structural
arrival rate are estimated with micro data from the GSOEPe8a#s the parameter esti-
mates, the job arrival rates can be computed as well asti@nprobabilities and hence,
the state distribution for an economy of representativenesgean be determined apply-
ing the methods derived in this chapter. The knowledge o$tate distribution makes it
possible to evaluate the Hartz IV reforms in terms of unemplent and welfare effects
by models like the one in chapter 3.

The starting point for the calculation of the transitionlpabilities are interdependent
Volterra integral equations of the first and the second kividch can be derived applying

2Compare subsection 3.3.1 for details on the modeling ofdhejrival rate.
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the Semi-Markov theory. The key issue is to solve the intsgvehich contain unknowns
and cannot be solved analytically. To this end, the probktransformed into a discrete
one and numerical solution methods are discussed. Theafiffenethods have different
advantages and drawbacks. As a rule, the more precise adnsthbe longer the com-
putation takes, leading to a time-preciseness trade-die different numerical results
for the transition probabilities are therefore collected a@iscussed. First, the special
case of constant arrival rates is considered. The Semi-dtgskocess is a continuous-
time Markov chain then, for which the transition probakekt are known. Hence, the
numerical solutions can directly be compared to the aralsolution. Permitting non-
stationary arrival rates, with the setup taken from chaptaercomparison to an analytical
solution is no longer possible. Hence, the numerical mesluach only be studied inde-
pendently and with respect to the limiting behavior. As exed, the more complicated
method provides the more exact results for the transitiobadbilities. Since this already
applies to smaller step numbers, the computational effoittted more complex method
can be outweighed by using less steps. This also applieg torfting distribution.

The outline of this chapter is as follows. Section 4.2 désgithe basics of Semi-
Markov processes. From section 4.3 on, we apply the Semkdaheory to our labor
market model presented in chapter 3, in order to illustrateti®n procedures for tran-
sition probabilities of Semi-Markov processes. In secdof, numerical solution pro-
cedures are described. Section 4.5 presents and comparegttomes of the different
numerical methods and section 4.6, finally, concludes vaighfindings of this chapter.

4.2 Semi-Markov processes - the basics

This section deals with the basics of (Semi-)Markov proegsgirst of all, like Markov
processes, a Semi-Markov process is a stochastic procestecidastic process collects
realizations of one or more random variables over time aadtbory of stochastic pro-
cesses tries to find models which describe such probab#igstems. One can distinguish
between discrete-time processes and continuous-timegges. While the system is ob-
served at discrete points in time only in the first case, tihewdntinuous observation
given for the latter. Throughout this chapter, we focus adbntinuous-time versions.
The starting point of this section is a brief introductionMarkov processes since many
well-known concepts also hold for Semi-Markov processe$ierAhat, the definition
of Semi-Markov processes will be given and their propenésbe outlined. The sec-
tion concludes with a derivation of conditional transitiprobabilities of Semi-Markov
processes.
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4.2.1 Continuous-time Markov chains

Markov chains are stochastic processes and have the prapéeing memoryless. This
means that a continuous-time Markov chain (CTMC) is a sequein@alized states and
the transition probability to another state depends ontinesnt state only and not on the
history of states. Therefore, for the continuous-time Mar&hain the following Markov
property holds:

P{X({t+s)=jlX{t)=0i,X(u):0<u<ty=P{X(t+s)=jlX(t)=1},

whereX (t) denotes the state of the system at tih@d X (v) : 0 < u < ¢ denotes all
statesX (u) in the history from0 up tot¢, compare Kulkarni (1995). In other words, this
property means that the probability of being in statdt + s, given that the system was
in state: att and the complete history of states, is equal to the prolabifithout the
information on the complete history.

The duration period of a CTMC in states exponentially distributed with parameter
A\, SO the probability of leaving a statéowards anothearbitrary state in a spell of or
less is given by

0 if <0
F(S):P{SSS}:{l—e_’\”” if x> 0.
The state duration period of leaving stateowards aspecificstate;j is exponentially
distributed with parametek,; > 0. By definition, it holds thatz#i Aij = Ni. The
parameters\; and )\;; are also called transition or hazard rates, which beconess cl
when considering the definition of the hazard. The hazaselisathe probability of in-
stantaneously leaving statatt, given that state has been occupied til] see Lancaster
(1990). Therefore, the hazard rate for leaving stabeany state is the probability density
function of the duratiory (¢) divided by the survival function in this statel — F'(¢):

t
h(t) = 1f—%

Aief)\it

it

Equivalently, the hazard rafg; for leaving stateé and going to statg can be determined.
The states of a Markov process and the corresponding ti@nsites can be visualized
in rate diagrams. Figure 4.1 shows the rate diagram for astate Markov process. Let
the states be staté’‘and state 1’ and the transition rates,; and\,, be given byu and
A3, respectively. Clearly, in a process with two states, the odfeaving: and going to

3The variable)\; with a subscript denotes general arrival rates, while thi@lske \ without any sub-
scripts is often used for separation rates in job search Iodkis notation is kept throughout this chapter.
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Figure 4.1: Rate diagram for a CTMC with two statésafid 1). The states are rep-
resented by the ovals. The transition rates are given atrtioevs that symbolize the
transition.

J, Aij, Is identical to the rate of leaving \; = Z#i Ai;. Therefore, the rates are simply
given bylg; = Ao = pandi;g = Ay = A.

The transition probability matri¥ = [p;; (¢)] contains the probabilities that the sys-
tem which is initially in state will be in state;j at¢, P {X (t) = j|X (0) = i}. In order to
compute these transition probabilities, the Chapman-Kgbmav equations can be used,
for details see Ross (1996), for instance. In contrast torelisdime Markov chains
(DTMCs), where the limiting behavior depends on specific props of the DTMC, the
limit of a CTMC transition probability matrix always exist§he limits are given by

1
lim pj; (t) =
t—o0 " Ajnjj
and ;
t=o0” Uz

where f;; is the probability that the spell of statas less than infinity and a transition
occurs toj, fi; = P{T; < co|X (0) =i}. T} is the first time the CTMC enters state
j andn);; is the expected reoccurrence time of stat@iven that the initial state ig,
nj; = E[1;|X (0) = j]. A proof is provided in Kulkarni (1995).

The interpretation of the limit of;; (¢) is as follows:1/); is the expected duration in
statej and once the process leaves state;; is the expected time until re-entering state
j.

For the limiting probability of ending iy when starting in;, one needs to know how
likely a transition from: to j in a period less than infinity is, which is given bfy;, =
P{T; < 00| X (0) =1i}. Once the system enters stgteonly the limiting probability
for ending in statej upon beginning in statg is needed, which we just determined
asp;; (t) = 1/(\jn;;). The joint probability is then the product of both probéisi,
thereforef;; is multiplied by1/(\;n;;).
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The limiting probabilities are illustrated by returningttee example from figure 4.1.
The rate)\; is given by\; = X\ and the rate\, by \; = i. The expected reocurrence time
n;; is given by the sum of the expected duration in both statgs+ % + 5. So, the
expected duration in stage1/);, and the expected duration in state/)\;, after having

left statej are added up. Having all this in miniy, . p,; (1) = A_}]__ become$
I (1) = — and I (t) = 2 (4.1)
1m = 1m = —0. .
t_mpoo ) t_mpn )

In standard labor market models with the two staemploymenandunemploymenthis
limiting distribution is equal to the equilibrium unemplognt rate and employment rate,
respectively, which can be shown by using a law of large numbe

CTMCs whose expected returning time for a state is less thantinéire callecergodic
and they have an interesting property. Namely, the limidiggribution of the states does
not depend on the initial distribution of states, = lim, .., P {X (t) = j|X (0) = i}.

In this case, the limiting distribution can be computed byngghe so-called balance

Zpi)\ij = Z PjAjis

jesS jesS

equations,

combined with the condition that all probabilities must sumto 1,% . ¢p; = 1. The
idea behind the balance equation is quite simple: in the,liflews out of state must
equal flows into staté. This property also leads to the well-known expression lfier t
equilibrium unemployment rate in standard matching modls constant arrival rates.

4.2.2 Semi-Markov processes

Also for Semi-Markov processes (SMPs) it holds that onlydbeent state is relevant
for the transition rates - and in this sense, there is stilnorylessness. However, the
transition rates to other states may change over the dorafi@ state and therefore,
the inter-arrival times between subsequent states arenget@xponentially distributed.
Thus, the extensions compared to CTMCs are an arbitrary dardistribution and non-
stationary transition rates.

A natural way to approach SMPs is through renewal theoryrevimter-arrival times
between events do not need to be exponentially distribtedthis purpose, it is helpful
to define a Markov renewal sequence as a sequence of a evearatom variable first.

“4In a system with two states, the remaining limiting prohitibs are computed biym; . p;; (t) = 1—

lim;_, o ps; (t). Hence, the limiting transition probability from statéo state0 is lim; o p1o (t) = ﬁ
and the limiting transition probability from stafeto statel is lim;_. o, po1 () = ﬁ
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The two elements of this bivariate random variable are treeofation timeS,, of the
nth transition and the correspondimgh observationy,,, n > 0,Y,el = {0,1,2,..}.
The joint probability of observing,,.; = j in an inter-arrival time of5,,,; — 5,, < z,
conditioned on the observation history, satisfies the Magkoperty,

P{Yn+1 - j> SnJrl - Sn < x|Yn - i?‘snvynfl;Snfly 7%70} =

Finally, a SMP is a stochastic process that records theafttite Markov renewal process
at each point in time, see Pyke (1961a).
More formal, let{(Y,,S,).n > 0} be a Markov renewal sequence. LEt(t) be the
state with the last completed state spell befor® (1) = sup {n > 0:S,, < t}, and let
X (t) = Ynw- Then, the stochastic procesX (t),¢ > 0} is denoted as a Semi-Markov
process. The matri& (z) = [G;; (x)] as defined in equation (4.2) is called #ernelof
the SMP, compare Kulkarni (1995).

Next, we discuss some properties of SMPs, which help toigjasem. A SMP is
time-homogeneousjust the interval until the next transition matters foetprobability
- not when this interval started, or more specific

A SMP is calledregular if there is only a finite number of transitions possible in @&n
time period. The SMP isreducibleif each state can be reached from any other state; the
states are said to communicate with each other in this cas¢atéy is calledrecurrent
if the process returns to this staten a spell less than infinity and it is callédhnsient
otherwise (if it never returns). A state is denotedpasitive recurrenif it is recurrent
and the expected returning time to stategiven the process started inis less than
infinity. For a SMP, a recurrent staias calledaperiodicif it is possible to visit this
state anytimePeriodicitywith periodd is given if a staté can only be visited at positive
multiple integers ofl, d > 1, see Ross (1996). Therefore, aperiodicity actually means
d = 1. The initial distribution vector of states = [a,| reports the probability that the
state of the system isat the beginningq; = P {X (0) = ¢}. Finally, a regular SMP is
fully specified by the initial distribution of statesand the kernelz (z) = [G; (z)].
Example. In standard labor market models with two states, all statethe SMP
communicate. Furthermore, the SMP is regular, positiverreat, irreducible, and fi-
nally, aperiodic. It is intuitive why: the statsnemploymenis accessible from the state
employmenand vice versa. Hence, the states communicate and the SMBdagible.
The SMP is regular because the probability of very shorttthna is less than one. This
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means that finding a job or loosing it normally needs some.tilnis positive recurrent
because the expected ‘revisiting’ duration for an unemgaiogr an employed is less than
infinity. The SMP is aperiodic because obviougly- 1 in this two-state process.
Deriving the conditional distribution of the states in a SMIP (¢) ,t > 0} at a fixed
t > 0 requires something like the Chapman-Kolmogorov equatibasfor SMPs. In
doing so, the renewal argument is used to develop integuetems, which is postponed
to the next subsection. The numeric methods described irethainder of this chapter
then deal with the computation of these integral equations.
For positive recurrent, irreducible, and aperiodic SMRs, limiting probability of
being in statg when starting in stateis independent of,

. . . Uy
= 1im P{X (t) = j|X (0) =i} = =20 4.3
i = Jim PAX (1) = 1X (0) =1} = g2 (4.3)

wherer is a solution tor = 7G (o0) andry is the expected duration in state & =
0,1,2,..., see Kulkarni (1995); also a proof is provided there.

For a labor market model with the two staie@employment) an@ (unemployment),
the kernel is given byxo (00) = 1 andGy, (o00) = 1, hencer = (1,1) satisfies the
equationt = wG (o0). Therefore, equation (4.3) becomgs = WO"TOm The limiting
probability of being unemployed is given by the expectedatian of the state unem-
ployment divided by the sum of the expected duration in the states unemployment
and employment. According to Cox (1962), this holds for arsgrdiution.
Consequently, the limiting distribution in a two-state labwarket model, with duration-

dependent transition ratgs.) and\(.), becomes

Po = fooo exp {_ foz M (U) d’l)} dx
fooo P {_ fox A(v) dv} dx + fooo exp {_ fom p(v) dv} dx’

p1=1—po.

(4.4)

Equipped with this intuitive, but also formal classificatiof Semi-Markov processes,
the next subsection describes the derivation of the tiangtobabilities with the integral
equations mentioned above.

4.2.3 Transition probabilities of Semi-Markov processes

Now we turn to the transition probabilities of SMPs. This sedtion states the general
notation and the mathematical basics used throughout hiaister when computing the
conditional transition probabilities of a SMP. Pyke (196&ad Pyke (1961b) are the

5See appendix chapter B.1 for a derivation.
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seminal articles mentioned in nearly every work about Selaikov processes. A very
accessible presentation embedded in a general introduittistochastic processes can
be found in Kulkarni (1995).

However, before deriving the equation for the distributadrstates, some more def-
initions and clarifications are needed. L¥tdenote the state of a system after itth
transition and let this state belLet the point in time of thexth transition be denoted by
Sh.

The conditional probability of going from stateto state; in a time interval ofz or
shorter is given by

Qij () = P{Ypi1 = 7,501 — Sp < 2| Y, =i} .

Besides the fact that it might not be 1 for— oo, Q);; (z) features all properties of a
distribution function, compare Kulkarni (1995). Specifiga();; (x) is non-decreasing
inz, dQC"’l—;(I) > 0.

Example. A worker jumps between the two labor market states with thgadrates
being either constant or duration-dependent. As alreaditioreed earlier, the process is
a CTMC in the first case and a SMP in the latter. Such a procetsoisalled alternating
renewal process because it alternates between these tes. sthe probabilities that a
jump fromi to j occurs in a time period shorter or equakt given for these alternative
cases by

1] —e constant\
Qo (v) = — [T Aw)d for i ’ (45
1 — e Jo Aw)dy duration-dependenk (y)

Qo1 (z) = { o } for { constan:

1 — e Jo rwdy duration-dependent (y)

assuming that the starting point of the time interval and the endpoint is. Due to the
homogeneity of the SMP, the probabilities and distribugionly depend on the interval
lengthz and not on where the interval is situated on the time &Xige probabilities of
remaining in a given state, the duration distribution, fareatain amount of time: are
given in the duration-dependent case by

Qui (z) = e I AW O () = e Jo 1), (4.6)

The probability thatany transition takes place in the spellis given by summing up
the leaving probabilities for each possible Stat€); (r) = £,..;Q;; (z), not taking into

6So0, it holds that);;, (z) = Q.1 (7|t) wherer =t + .
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Figure 4.2: Three possible ways of starting in statg¢ = 0 and ending up in statea
time periodz later.

account transitions fromto <. In a process with two states only, this becomes

(@ (m) = Qo (l’) , Qo ($) = Qo1 (m) . (4.7)

Having done this preparation, we can now compute the prbtyadi being in statej
atz, conditioned on starting from stateoday. There is a ‘black box’ on the way froim
to j: we know that the system is in stateoday and in statg a periodz later, but neither
do we know when this transition occurs nor whether it occinesctly or via other states.
Consequently, all alternative ways of starting iat¢ = 0 and ending up iy atz have
to be taken into account. Figure 4.2 illustrates some pihisigib for a continuous-time
SMP with two states to start in statand to end up in statea time periodr later.

Translating all potential transitions that could occurhatt‘black box’ for a multi-
state process into mathematics gives the following expess

Py () = 8 [L = Qu(o)] + Sus [ " Que (& — v) dpry ()
=0, [1 — Qi (z)] + Xpz /Ow dQix (V) pj (x —v). (4.8)

Integral equations like equation (4.8) are Volterra eaquratiof the first and second kind,
see Polyanin and Manzhirov (1998), for example. Equatiatesy (4.8) gives the prob-
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ability that the process startingimwill be in j by x, see e.g. Kulkarni (1995) for a proof.
The integralf,” Qi (z — v) dpy; (v) is called the convolution af; (.) andpy; (.), which
is denoted by, * px; (). In the transition to the second line of equation (4.8), iva<
mutativity of the convolution is used);; * py; (z) = prj * Qir ().
The interpretation of equation (4.8) is as follows: the fpatt of the right-hand side is
the probability that the system, being in stat@ever leaves stateuntil the end of the
periodz. In this casei = j andd;; = 1, sol — Q; (z) is the survival probability in state
i. This case corresponds to the upper subfigure of figure 45241, thend;; = 0.
The second part of the right-hand side of equation (4.8kctdlall cases in which the
transition from: to j occurs via another stakte+ i, applying the renewal argument. First,
the probability that the process stays in stdier a period of lengthy and then passes to
statek is considered, captured 163, (v). Passing to this new statecan be interpreted as
a renewal of the process because the expected behaviormiitess from then on is the
same as whenever the process enterildence, the probability that the process which is
in statek atv will be in statej atx has to be taken into account, capturephy(z — v).
As the transition fromi to £ could occur anytime betweénandz, all possible transition
times have to be covered by the integration ovefThe cases, in which the transition
occurred via other states is illustrated fot j in the two lower subfigures of figure 4.2.
Equation (4.8) can be rewritten, provided tha}, (v) is once differentiable, as

pij (v) = 6ij [1 — Qi ()] + Bpp /Ow prj (. —0) dQ;Z(U)

dv. (4.9)

This equation is the origin for the following analysis basedabor market applications.
As the ();, are expected to be known and differentiable in economiciegipbns, the
starting point here will be equation (4.9) rather than eigua4.8) without loss of gener-
ality.

4.3 Semi-Markov processes with two states

As stated earlier, this chapter picks the example of ourrlaierket model from chapter
3. There are the two labor market stateemploymeni)) andemploymen(1) and thus,
four transition probabilities for the future: an unempldyemployed person can either
be unemployed or employed at some future point after a spdlet these probabilities
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be denoted by;; (x). Writing them out in terms of the general equation (4.9) gives

_ ’ dQu (v)
poo () =1 — Qo (z) + /0 p1o (x — v) o dv, (4.10a)
pw@>:/‘mﬂx_wdeWLw’ (4.10Db)
0 v
pi(z)=1—0Q (v)+ /0 po1 (x —v) %?U(U)dv, (4.10c)
pm(x)::AxpuCr—v)infwdv. (4.10d)

In the remainder of this section, we first discuss a specsd cda SMP, namely one
with constant arrival rates for both states. Since the SMisisa CTMC in this case, the
results for the probabilities from the SMP theory can be carag to the known results
from CTMCs. This model is then extended in the way of chapter [3rey there are
constant arrival rates in the state of employment and curatependent arrival rates in
the state of unemployment.

4.3.1 Computing transition probabilities for constant arrival rates

Assuming a continuous-time setup, where the transitieesritom one state to the other
are constant, the well-known expressions for the tramspimbabilities of being either
unemployed or employed depending on the current state caerided. Letp;; (z) be
the probability that a system being in stateill be in state; at a spell: later. Starting
from the Chapman-Kolmogorov backward equations, a systediffefential equations
can be derived. The solution to this system gives the tiangrobabilities:

oo (z) = . i <+ . i )\6_[#-‘1-)\}90’
p1o () = ﬂj‘_}\ _ . j‘_ /\6_[lt+>\]x7
i (z) = . i =+ . i /\e*[lﬂr)\}m?
por (z) = . i N n f: Ae‘“‘““”, (4.11)

see Ross (1996) or Kulkarni (1995), for example. In the linitta— oo, the second
terms of the probability equations approach zero. Heneelithiting distribution does

not depend on the initial distribution of states, 0= py; = p11 = ﬁ andp, =

P10 = Poo = #—iA Since CTMCs are special cases of SMPs, we will now show that the
transition probabilities (4.11) are special cases of theengeneral equations (4.10) for

transition probabilities of SMPs.
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First, the derivative o)y, (v) is prepared,

dQo1 (v) _ e (4.12)
dv

Inserting this into the transition probability equationl@) for SMPs yields

po1 () = ,U/ i1 (x —v) e Hdv.
0

From subsection 4.2.3, it is known that the convolutiom@fand g, is commutative,
that means the convoluted functions and the arguments caridsehanged. Applying
this gives i

poi () = M/O pu (v) e My, (4.13)

Next, the time derivative of equation (4.13) with respectrtes computed using the
Leibniz rule for integral functions, comparealde (2008),

pou () = o [pn (z) — N/ pi (v) e ldu |
0
Finally, replacing the convolution by, (z) from equation (4.13) yields

por (z) = p[p1n (¥) — por ()] = pp11 () — ppor (x) - (4.14)

This is the expected differential equation which can bevgeras well from the Chapman-
Kolmogorov backward equations. For the remaining thretestahe corresponding dif-
ferential equations can be determined in the same manndvin§dhese differential
equations gives the probabilities (4.11). Hence, intéipgethe CTMC as a SMP with
constant arrival rates leads to the same transition protiedi

4.3.2 Computing transition probabilities for general arrival rates

From this subsection on, we use duration-dependent jolabrates as given in our labor
market model.

Having non-stationary job arrival rates, the derivativesoading to equation (4.5) are
given by

d Yy 4 [ y
QS;U(U) — o o u(y)dy%/o 1 (y) dy = e~ Jo PO (4)

dQqo (U) _ e*fo” /\dyi /v My = e~ Jo Ady )
0

dv dv

"Extending the model additionally by a non-stationary jolshemployment transition rate is also pos-
sible and would not change the general proceeding.
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Together with equation (4.7) and the derivatives, the ttamsprobabilities from equa-
tion (4.10) become

poo (x) = € oty /Ov po(z —v)e” f‘f”(y)dyﬂ (v) dv, (4.15a)
pio () = /Ox poo (x — v) e~ Jo AW \dw, (4.15b)
pi (z) = e oAy 4 /05’3 por (@ —v) e Jo MY )dy, (4.15c)
po1 () = /Ox pu (z —v) e Jo POW (1) du. (4.15d)

These four equations are central for deriving the transpimbabilities of SMPs. Obvi-
ously, equations (4.15a) and (4.15b) as well as equatiohS¢¥and (4.15d) are interde-
pendent. The equation fpg; () depends opy; (x — v) and the equation faw;; (), in
turn, depends opg; (z — v). The transition probabilitieg,; (x) andpy; (z) can be de-
termined first and then the transition probabilities for thenplementary eventg;, (z)
andpg (), can be obtained immediatély.

One way to solve the probabilities analytically is the LapksStieltjes transform,
compare Kulkarni (1995). The striking fact with respect tuations (4.15a)-(4.15d)
is that an analytical solution is not feasible in cases likernodel because the job arrival
rate has no analytical solution. Therefore, the remaindiéhis chapter deals with the
numerical solution of the interdependent integral equisti@.15a)-(4.15d).

4.4 Numerical solution of the transition probabilities

In order to solve the transition probabilities at some pairitme x numerically, at least
two of the integrals in equations (4.15a)-(4.15d) have tdrhesformed into discrete
integration problems. To this end, the interval of lengtis divided intoz discretization
steps first. The distance between subsequent steps, theidtepish = =/~ and the end
point of the intervak is represented byh. Thus, equations (4.15a) and (4.15b) become

. ) ) zh y
pon ) = ¢ O [ O 1) g (s — in) ) (4.26)
~—

/

0 N~

=Qoo(2h) =g(ih)

8After having solved for two probabilities, the remainingptare the probabilities of the complementary
events and can be solved by subtracting the respective lhtyp&rom 1. Thus, an unemployed today can
be unemployed at, for which the probabilitypy () can be computed. The complementary event for the
unemployed today would be occupying a jobxatAs there are only the two possible state@mployment
andemploymentthe probability for the latter is given yp; () = 1 — poo ().
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and

p1o (2h) = / Zhgfé" M \pog (2B — ih)d (ih) (4.17)
’ =1(ih)

In general and independently from the numerical integratn@thod, the approximation
of the integral gets more precise the more steps are usedirdiwback of having a better
precision with more steps is the prolonged computing timmetfe integrals.

Furthermore, a numerical integration method has to be chiwserder to approxi-
mate the area beneath the function. In this section, two noalentegration methods
are presented and compared in the context of the Semi-Mdrkogition probability
problem. In subsection 4.4.1, the very basic rectanglgraten method is introduced,
while subsection 4.4.2 deals with the trapeze integrafidrese rules can be subsumed
under the Newton-Cotes quadrature formulas. A general ptasen can be found in
Judd (1998) as well as in Schatzman and Taylor (2002).

4.4.1 Rectangle approximation

This subsection describes the numerical solution of eqoat{4.15a) and (4.15b) by
using the rectangle approximation of integrals. As theilisteseveral variations of the
rectangle approximation, the first step is to present theegéndea of computing an
integral via rectangles as the basis of all variations. Tloere of the variations, the
algorithm using left rectangle integration, is discussedetail.

The general setup

As the nameectangle approximatioalready suggests, it consists of adding up the areas
of rectangles beneath a function, sa). The width of every rectangle is the step-width
h and the height is the function valygih) at the current position of the indéxHence,
the rectangle area is computed /by~ (ih).

Possible variations of the rectangle method refer to thetfon value~ (.), which
determines the area of the first rectangle. In literatureetimethods are distinguished,
see Schatzman and Taylor (2002). Figure 4.3 illustratediffexent methods.

As for the right rectangle method, the first rectangle is thewith heighty (0), hence
the area to the right df is computed. Consequently, the rectangles fiem0, ...,z — 1
are added. The left rectangle method begins with the relgtarfdheighty (12) which
means that the area to the left bi is considered. In this case, the rectangles from
¢ =1,...,z are added. For the midpoint rule, the first rectangle takdreisne with height
7 (0.5h), so the function value in the middle of each interval is usetbm figure 4.3
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Y(ih)
A

_h
0 1h 2h 3h 4h 5h ih
Y(ih)
A h
0 1h 2h 3h 4h 5h ih
Y(ih)
A

_h

\\

0.5h 1.5h 2.5h 3.5h 4.5h ih

Figure 4.3: The three subfigures show the approximationeétha beneath the function
via rectangles and the function values used for the reatanglhe upper figure presents
the right rectangle method, the middle figure the left regamethod, and the figure
below the midpoint rule.
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becomes clear why the rectangle method is a so-cafpeth rule none of the variations
uses both interval endpoints, compare Judd (1998).

In the following, the left rectangle rule is discussed inadlewithin the Semi-Markov
framework. The other two rules can be derived similarly.

Algorithm Left Rectangles

As mentioned above, the first function value needed for thhedetangle algorithm is the
one ati = 1. Hence, by using the left rectangle approximation amliscretization steps
the integral becomes

/Omy (v)dv = hy (1) + hy (h) + hy (2h) + ... + hy (zh) (4.18)

=h (),

wherezh = z is the interval endpoint. Using the numerical integratigoation (4.18),
the transition probabilities for Semi-Markov processe4%4) and (4.15b) become

poo (2h) = ¢ "X ) N " e ket N (i) g ([2 — i) h)

=Qoo(zh) =1 =g(ih)

= Qoo (zh) + hY_ g (ih) (4.19)

and

pro(zh) =Y e Zie dpgg ([2 — i] h)
=1 D

=f(ih)

Y ). (4.20

Starting from the given initial valugs, (0) = 0 andp, (0) = 1, the probabilities for
any z can be computed successively, which is shown in the follgwaigorithm.

e |nitialization forz =0

The initial valuespy, (0) andp;, (0) can be deduced intuitively. If a worker is
unemployed today and no time goes by, there is no chance ffiortdnibecome
employed. Consequently, the probability of staying uneygiiois equal to one,
poo (0) = 1. Equivalently, for an employed worker there is no risk of napoy-
ment if no time goes by, which meaps, (0) = 0. Therefore, the initialization for
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the transition probabilities is given by

poo (0) =1
P1o (0) = 0

)

e 2=1

Starting points are, like at the beginning of every step,tthasition probability
equations (4.19) and (4.20). Setting- 1 yields

poo (h) = Qoo (h) + hg ()
= e g hem Oy (h) pig (0)

and

P10 (h) = hf (h)
= h)\(i_)\hp()() (0) .

The computation of the unknowms, (k) andpg (h), givenp (0) andpg (0), is
now straightforward.
» z = 2 and subsequent steps

Evaluating equations (4.19) and (4.20) for= 2 and using the definitions of
Q11 (ih), Qoo (ih), g (ih), andf (ih) gives

2
Poo (2h) = Qoo (2h) + hz g (ih)
=1
2 2 L
= e PR nlil) N " e h e ) 1 (i) pyg ([2 — 1] h)
=1
and
2
pro(2h) = by f (ih)
1=1

2
=hA) e Ek=Apg ([2— i) h) .
=1
The further procedure for > 2 is similar. In this way, the transition probabili-
ties within an interval can be computed step by step untipttedabilities for the
desired point in time are reached.
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v(ih)

AT T

0 1h 2h 3h 4k 5h ih

Figure 4.4: When using the trapeze rule, the area beneathiic&dn is determined by
adding up the area of the trapezes with step widtts well as side lengthg(:h) and

v ([ = 1] h).

4.4.2 Trapeze approximation

The second approximation rule discussed in this chaptéeigrapeze rule. The integral
is determined via the sum of trapeze areas beneath theduandtituitively, the trapeze
rule can be derived from the rectangle approximation byragldr subtracting triangles
resulting from chords through the end points of the intexval

The general setup

When using the trapeze approach, there is no longer a diffatiem between aight or
left method. As the rule uses both endpoints of the interval, daited aclosed rule
according to Judd (1998). Figure 4.4 illustrates the tra@gproximation rule.

The trapezes taken for the approximation of the area aretrootesd by using the
width / and the lengths ([i — 1] k) and~ (ih). As for the rectangle rule, all trapeze
areas in the interval are added up. Hence, an integral ofcifumy (.) becomes

* 1 1 1
| 7)o = ShE O+ B+ 50 (0 3 Q)+t 5 by (= )+ 3 ().
0
Recollection results in
1

/Oxy(v)dvzh[%7(0)—!—7(71)—1—7(2}0+...+7([2—1]h)+§’y(zh)

z—1

1 , 1
=5 () +h Y v (ih) + Shy(zh). (4.21)

i=1
Also for this method, the endpoint of the interva= zh is reached after discretization
steps and = ih is the time point of the current index position
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In the following, the application of equation (4.21) for tb@mputation of the transi-
tion probabilities (4.16) and (4.17) is described.

Algorithm
The general numerical integration equation (4.21) for thpdze approximation can be
used to substitute the integrals in equations (4.16) arid)4The former becomes

z—1

o (2h) = Qoo (1) + 3hg (0) + 1S g ih) + g (1)

In addition topy, (zh), this equation contains a second unknows () = 1 (0) pio (zh),
namelyp (zh). Isolating the two unknowns gives

z—1

poo (1) = S (0) pro (=) = Qun (=h) + B Y g (ih) + hy (h) . (4.22)
9(0) =

The full equation without the short-cut functions is wnitteut in the appendix chapter
B.2. The second equation (4.17) needs a discrete countéopdhie trapeze case, too.
The procedure is equivalent, so after replacing the integi@ording to equation (4.21),
the probability for the transition from employment to undaypnent reads

o (zh) = hF (0) 4 h Y F () + Shr (h).

This equation also has two unknowmps; (zh) andpg (zh), because the left expression
on the right-hand sidef (0) = Apgo (zh), contains the unknowpy, (zh). Again, the
final step is the isolation of both unknowns,

z—1
pio (2h) — ZhApuo (2h) = OMWIGE Sh (ah). (4.23)

£(0) -
For the full version of this equation, see B.2 of the appendginally, the two un-
knownsps (zh) andpg (zh) from equations (4.22) and (4.23) can be determined since
the p1o (zh — ih) andpgy (zh —ih), i = 1,..., z, are given from previous calculations.
In other words, by starting from,, (0) = 0 andpy, (0) = 1, all p(zh) can be solved
successively. Equations (4.22) and (4.23) are the stapimgts of all algorithm steps,
but the initialization. The algorithm steps for= 0, = = 1, andz = 2 are presented in
the following.
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e |nitialization forz =0

The initial transition probabilities from unemploymentunemployment and from
employment to unemployment are given by

poo (0) =1
and
P10 (0) =0,
respectively, for the same reason as in subsection 4.4thdoectangle integration
method.
e 2z =1

After the initialization, this is the first computation stephe basis of all compu-
tation steps are equations (4.22) and (4.23). Settiagl in the former and using
the definitions of)q, (.) andg (.) from (4.16) yields the transition probability from
unemployment to unemployment/at

poo (h) — %hﬂ (0) p1o (h) = Qoo (h) + %tho (h) p (R) pro (0)/ (4.24)
9(0) g(h)

The transition probability from employment to unemploymat\: is determined
in the same manner, using(.) from equation (4.17). Setting = 1 in equation
(4.23) results in

1 1
pio (h) — 5impoo (h) = =he ™ \pg (0). (4.25)
—_— 2 N———
£(0) F(h)

Equations (4.24) and (4.25) are the first two equations wigfitst two unknowns
poo (h) andpyo (h). The solution is now straightforward.
* z = 2 and subsequent steps

The next step is to go on with = 2 and to computey, (2) as well agp;o (2h)
given the results from all previous steps. Equations (4a2#))(4.23) become

Poo (2h) — %hﬂ (0) p1o (2h) = Qoo (2h) + hQoo (h) ,u‘(,h) P10 (h)/

g(0) (h)

+ %hgoo (2h) 11 (2h) p1o (0)

J

g

g(2h)
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and
1 1
P10 (2h) — §h)\]900 (2n) = hf_/\h)\poo (hl + §h§_)‘2h)\p00 (027

~~

f(0) f(h) f(2h)

respectively.

The only two unknowns in step 2 agg, (2h) andpg, (2h) on the left-hand side
because, (0) andpy, (0) are known from the initialization anel, (k) andpg (h)
from the first step. So also this equation system can be sédvete probabilities
atx = 2h.

The proceeding for the subsequent steps with 3, ... equivalently starts from
equations (4.22) and (4.23). The mechanism is always the:sdrap, (z) and
p1o (zh) are calculated using the, (zh — ih) andpyo (zh — ih),i = 1, ..., z, from
the previous steps.

After the theoretical description of possible numericdugon methods, the next
section shows the computational results for specific nuzakexamples.

4.5 Numerical results

Having learned two alternatives of determining transifprobabilities in the previous

section, this section focuses on how both solutions perfgh@an applying them to spe-
cific labor market model$.

First, the methods of numerical integration discussed aptdr 4.4, the rectangle and
the trapeze method, are compared to the analytically cabputransition probabilities

in the case of constant arrival rates as given by equatiadd)4In general, it is clear

that the trapeze method will perform better than the redtangethod when using the
same step width and step number. However, an importantiqgnasthow much better

the trapeze method is when employing it for the solution aflabhor market model, con-

sidering that the trapeze method is more complex and willl meere computation time,

consequently. Furthermore, the limiting distribution asieed by equation (4.4) will be

tested. Thus, the analytical solution serves as a benchimattke numerical methods in

the case of constant transition rates.

Second, the probabilities for duration-dependent arniggts are computed with both
numerical methods. As there is no longer an analytical Eolwavailable in cases like

our economic model of chapter 3, the two solutions can onlgrizyzed independently.

9The algorithm of the solution procedure is set up in Matlate Tode is available on the enclosed CD.
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However, the limiting distribution can be computed for Séviarkov processes and, in
this way, at least the convergence of both numerical saistt@an be evaluated.

4.5.1 Constant arrival rates - convergence to the analytical solution

In order to test the convergence of the transition probadslcomputed via the numerical
algorithms, constant arrival rates are used. In this spease, the SMP is a CTMC, for
which the analytical solution of the transition probal®litis known, see equations (4.11)
in subsection 4.3.1. The parameters used for this analysisken from Shimer (2005).
The monthly values arg = 0.45 for the job arrival rate and = 0.034 for the job
separation rate. The interval endpointris= 500 months. The limiting distribution is

then given byp{' = 1 = 0.93 andpg = ﬁ = 0.07 according to subsection 4.3.1.

» Comparison of graphs

Figure 4.5 shows the evolution of the transition probabsitfor the analytical solution
compared to the numerical solution of tleetanglemethod. Each subfigure presents the
probabilities for different step numbers. The probabifity the transition from initial
unemployment to unemployment isfor ¢ = 0, the probability for the transition from
initial employment to unemployment sast = 0.1° The analytical solution reaches the
limiting distribution at about = 20 months and the two analytical curves can no longer
be distinguished from then on. The rectangle probabild@sot seem to converge at all
for the displayed step numbers. X5 steps, the numerical solution using the rectangle
method clearly underestimates the probabilitiestfor 25, see the upper subfigure. At
the endpoint of the figure at = 150, the numerically approximated probabilities are
nearly zero. FoR, 000 steps, there is still underestimation of the analyticabpiulities,

but the magnitude decreases and the difference betweendlemmputation methods at

t = 150 is much smaller than before.

105ee initialization step for = 0 in the previous section for the explanation.
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Transition probabilities with 250 steps
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Figure 4.5: Transition probabilities over time for the ani@ll solution and the rectangle

method. The upper figure shows the solutionZdd steps and the figure at the bottom
for 2,000 steps.
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Transition probabilities with 250 steps
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Figure 4.6: Transition probabilities over time for the apighl solution and the trapeze
method. The upper figure shows the solutionZdp steps and the figure at the bottom
for 2,000 steps.

Figure 4.6 shows the transition probabilities for the atiedy solution compared to
the numerical solution of therapezeapproximation, again for different step numbers.
Convergence is much better than for the rectangle solutidneady for 2,000 steps,
the trapeze probabilities approach the same limiting vatuthe analytical solution. As
before, the probability for the transition from initial un@loyment to unemployment at
t = 01is 1, whereas the probability for the transition from initial pleyment to unem-
ployment att = 0 is 0. The upper subfigure in figure 4.6 shows the curve250rsteps.
After the first20 months, there is a monotonically increasing overestimafide trapeze
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Figure 4.7: Transition probabilities for the analyticallgmn and the rectangle solution
ast — 500 for different step numbers. The upper figures show the iatéd75, 500],
the bottom figures show the intenjab9, 500].

solution is obviously still much better than the rectangletmod described above. The
lower subfigure shows the probability evolution 9000 steps. The improvement from
250 steps ta@2, 000 steps is large, especially frotn= 20 onwards. For this step number,
there is nearly no difference between the curves of the oalgolutions and the curves
of the numerical trapeze solutions visible. After this awew of the probability evolu-
tion, some more detailed figures on the behaviar-as500 will be shown.

Figure 4.7 shows the probabilities for the transitions frenemployment to unem-
ployment and from employment to unemployment both for thalydital solution and
therectangleapproximation zoomed in near the endpoint of the intervakwNhe range
of the underestimation of the analytical solution by theargle approximation becomes
better visible. Clearly, the numerical solution approadhesanalytical solution as the
step number increases with the errors getting smaller tweasing step numbers.
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Figure 4.8: Transition probabilities for the analyticaligmn and the trapeze solution as
t — 500, again for different step numbers. The upper figures showtkeval[475, 500],
the bottom figures show the intenjdh9, 500].

Figure 4.8 shows the corresponding probabilities fortthpezeapproximation com-
pared to the analytical solution. Also these figures vetigttfor a bigger step number,
the numerical transition probabilities perform better pgraximations of the analytical
solution. Furthermore, it becomes obvious that the trapgpeoximation method over-
estimates the analytical solution, but, unlike for the aagle probabilities, already the
solutions for2, 000 steps perform quite good. Having an equivalently good appra-
tion in the rectangle case would require 8,000 or more coatjaut steps.

» Comparison by computational results

Table 4.1 and table 4.2 present the computational resuldiffierent step numbers
and the three methods (analytical, rectangle, trapezed.sétutions and errors of both
numerical integration methods are compared to the analya@lution at different points
of the interval. While in the former table the results for trensition probabilities from
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250 steps 500 steps 2,000 steps
Value | Error | Value | Error | Value | Error
p{}O 0.070 - 0.070 - 0.070 -

1/5 | pf | 0.019| -0.051 | 0.035| -0.035 | 0.058 | -0.018
ply || 0.097 | +0.027 | 0.076 | +0.006 | 0.071 | +0.001
péy || 0.070 - 0.070 - 0.070 -
1/2 | pf || 0.003| -0.067 | 0.012 | -0.058 | 0.044 | -0.026
pio || 0.134 | +0.057 | 0.083 | +0.013 | 0.071 | +0.001
péy || 0.070 - 0.070 - 0.070 -
End | P& | 0.000| -0.07 | 0.002| -0.068 | 0.028 | -0.042
ply || 0.228 | +0.158 | 0.095 | +0.025| 0.072 | +0.002
4,000 steps 8,000 steps 16,000 steps
Value | Error | Value | Error | Value | Error

pd |loo70l - |o0o070] - [o0.070] -
1/5 | pf | 0.064| -0.006 | 0.067 | -0.003 | 0.069 | -0.001
pL |l 0070 - |o0070] - |o0070| -
pd [ 0070 - |o0070] - |o0070| -
1/2 | p& || 0.055| -0.015 | 0.062| -0.008 | 0.066 | -0.004
pL || 0070 - |o0070| - |o0070| -
pd |loo70l - |o0o070] - [o0070] -
End | PZ || 0.044| -0.026 | 0.055| -0.015 | 0.062 | -0.008
pL |l 0.071| +0.001| 0.070| - | 0.070| -

Table 4.1: Probabilities for the transition from unempl@mhto unemploymeny(.)
by t;, wheret; = 1/5 -z = 100, t, = 1/2 - z = 250, andt3 = = = 500.

unemployment to unemploymenyiy, (¢), are recorded, the latter shows the transition
probabilities from employment to unemploymeny;, (¢).*

The columns present the probabilities for different stebers, the rows show the prob-
abilities for the three computation methods analyticaltargle, and trapeze for different
points in the interval0, 500]. First, the probabilities /5 of the intervalt, = 100, then
the probabilities after half of the interval &t = 250, and finally, the probabilities at the
endpointz = 500 are compared for the three methods.

Table 4.1 shows the probabilities for the transition fromiahunemployment to un-
employmentpy, (.). For250 (500) steps and after/5 of the time, the rectangle solution
underestimates the analytical solution in a rang&36t (50%), whereas the trapeze so-
lution overestimates the analytical solution in a rang&98t (8.6%). So att; = 100, the

Note that the probabilities for the complementary eventseasily be determined via; (t) = 1 —
P10 (t) andpor (t) = 1 — poo (t), respectively.
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trapeze solution performs much better than the rectandlgéico. With increasing step
numbers, both approximated probabilities continuouslybgdter att; = 100 with the
trapeze solution being much better than the rectangleisoluflready at4, 000 steps,
the deviation of the trapeze probability from the analytmae is0% within the chosen
accuracy of three decimal places. At the interval endpoiat500 with 250 (500) steps,
both probabilities are very bad estimates for the analypoabability with an error of
100% (33%) or higher. As expected, the error decreases with incrgadgp numbers,
so at the interval endpoint witk, 000 steps, there is no longer a significant error for the
trapeze solution. The best result for the rectangle salwitahe endpoint = 500 with
16,000 steps still delivers an error af%, which is disproportionatly high given the re-
quired amount of computation effort. So in order to get rssfar the rectangle method,
which are equally good like for the trapeze method v@th00 steps requires6, 000
steps or more.

In the analytic case, convergence is reached at abibatonths. Using adequate step
numbers, it also takes both approximation methods ar@dmdonths until convergence
to the limiting distribution.

Table 4.2 shows the probabilities for the transition frontiah employment to un-
employmentp, (.). For250 (500) steps and aftet/5 of the time, the underestimation
by the rectangle solution is not as big as for the correspangli;(1/5) probabilities
with the error being about7% (39%). The trapeze solution overestimates the analytical
solution in a range 081% (7%). So att; = 100, the trapeze solution again performs
much better than the rectangle solution. With increasieg stumbers, both approxi-
mated probabilities continuously get bettertat= 100 as it has already been the case
for the pyo(.) probabilities. This holds for all considered points of tilnethe interval:
starting from the unacceptali?é0 and500 step cases, the results at all observed interval
points get better, the more steps are used for the calcalafigain, the results for the
trapeze method arz 000 steps are better than the results for the rectangle methbd wi
16, 000 steps.

» Convergence with respect to the limiting distribution

The limiting distribution of the SMP can be determined usegpation (4.4). How-
ever, the integrals cannot be evaluated analytically as ssothere is no analytic so-
lution for 1 (.). Hence, also for the limiting distribution, the accuracytloé different
numerical integration methods is evaluated. The analbiizating distribution values
arepy! = 5 =093 andp; = ﬁ = 0.07 according to equation (4.1). For both
integration methods, the computed values of the limitirgjriiution can be taken from



4.5 Numerical results

108

500 steps 1,000 steps 2,000 steps
Value | Error | Value | Error | Value | Error
piy || 0.070 - 0.070 - 0.070 -
1/5 | pf | 0.030| -0.04 | 0.043| -0.027 | 0.061 | -0.009
ply || 0.092| +0.022| 0.075| +0.005| 0.071 | +0.001
piy || 0.070 - 0.070 - 0.070 -
1/2 | p% || 0.004| -0.066 | 0.015| -0.055 | 0.046 | -0.024
pl, || 0.126| +0.056| 0.081 | +0.011| 0.071| +0.001
piy || 0.070 - 0.070 - 0.070 -
End | pf || 0.000| -0.07 | 0.003| -0.067 | 0.029 | -0.041
plo || 0.215| +0.145| 0.093 | +0.023| 0.071 | +0.001
4,000 steps 8,000 steps 16,000 steps
Value | Error | Value | Error | Value | Error
piy || 0.070 - 0.070 - 0.070 -
1/5 | p% || 0.066 | -0.004 | 0.068 | -0.002 | 0.069 | -0.001
pl, || 0.070 - 0.070 - 0.070 -
piy || 0.070 - 0.070 - 0.070 -
1/2 | p& || 0.057| -0.013 | 0.063 | -0.007 | 0.067 | -0.003
ply || 0.070 - 0.070 - 0.070 -
piy || 0.070 - 0.070 - 0.070 -
End | pft || 0.045| -0.025 | 0.056 | -0.014 | 0.063 | -0.007
pl, || 0.071| +0.001| 0.070 - 0.070 -

Table 4.2: Probabilities for the transition from employmenunemploymenp;,(.) by
ti, wheret; = 1/5-x =100, t, = 1/2 - = = 250, andts = x = 500.
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Py Dy

250 steps | 0.046 0.075
500 steps | 0.057 0.071
1,000 steps | 0.064 0.071
2,000 steps | 0.067 0.070
4,000 steps | 0.069 0.070
8,000 steps | 0.069 0.070
16,000 steps 0.070 0.070

pit = 0.070

Table 4.3: Limiting probabilitie®,, computed via the two numerical integration meth-
ods at different step numbers. The last line shows the acalytalue. The remaining
probability of the distribution can be calculated poy= 1 — pj.

table 4.3. Besides the numerical integration method, tisenew a second source of in-
exactness, namely the approximation of infinity30§). However, as the trapeze method
delivers very good estimates of the limiting distributidready for smaller time values,
approximating infinity bys00 appears to be reasonable when computing the expectation.
All in all, the trapeze method is also for the limiting distition precise enough given
our purpose: using, 000 steps already results in an error@f for three decimals pre-
ciseness, while the rectangle method still neBt900 steps.

In summary, the trapeze solution performs much better approgimation for the
analytically computed CTMC transition probabilities ané thmiting distribution than
the rectangle method for the given labor market framewohis Detter exactness comes
along with an extended computation effort since the trapeethod is more complex.
However, the increased computation effort due to the higberplexity can be reduced
again: the trapeze method requires less steps in order¢h eegiven accuracy. While
for our purposes?, 000 steps prove to be exact enough when using the trapeze method,
we would need 6, 000 steps or more to reach acceptable results for the rectarejheoch
Altogether, the choice of the integration method should lagl@depending on the com-
plexity and the scope of the underlying project.

4.5.2 Duration-dependent arrival rates

In this subsection, the transition probabilities in a setigh duration-dependent arrival
rates for jobsg: (.) and constant separation rateare computed. The (.) are taken from
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P () poo () pih () Pl ()
100 | 0.178 0.179 0.163 0.163
250 | 0.165 0.167 0.166 0.16
500 | 0.162 0.167 0.163 0.16}

~7

Table 4.4: Transition probabilities for duration-depemdt&ransition rates at different
points in time for2, 000 steps.

our labor market model of chapter 3. The parameters usedl ar@.0098, 2, 000 steps,
and again500 as the interval endpoint. It is no longer possible to comgpa@enumerical
solutions to analytical solutions because an analytickitism is no longer available.
However, the evolution of both methods can still be congidemnd discussed, as well as
the convergence to the limiting probabilities.

« Evolution ofp,; (¢) for increasing using rectangle and trapeze approximation

Figure 4.9 shows the evolution of the transition probabsgibver time using, 000 steps.
The trapeze approximation approaches a limiting value otilh 167, while the rectan-
gle probabilities slightly keep decreasing. Table 4.4 sheame selected values.

As there is no longer an analytical benchmark for the prdibsi, the next step is to
compute the limiting distributions by the two numericakigtation methods.

» Convergence with respect to the limiting distribution

Using equation (4.4) with the two numerical integration noets and approximating in-
finity by 500 gives estimates of the limiting distribution for each methbBor the rectan-
gle method, it is given by

P =0.1683, pff = 0.8317, (4.26)
while the trapeze method yields
py = 0.1684, p| = 0.8316. (4.27)

These values are quite similar and they can be compared thnhmg values from
above. For, 000 steps, the trapeze solution performs again better, as caedrefrom
table 4.4. The trapeze solutionfat= 500 of about0.167 is nearer to both the trapeze
limit of 0.1684 and the rectangle limit di.1683 than the rectangle solution at= 500.
This result is in accordance with the findings from the prasisubsection.
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Transition probabilities with 2000 steps
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Figure 4.9: Transition probabilities of the labor marketdebwith duration-dependent
job arrival rates in the intervdD, 180] (upper subfigure) and in the interv@R5, 500]
(lower subfigure) fo2, 000 steps.
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4.6 Conclusion

The use of Semi-Markov processes allows a more realisticrigiéi®on of behavior or
states in economic modeling. In labor market theory, danatiependent transition rates
account for microeconomic reactions of individuals oves tmemployment spell due
to incentive effects of non-stationary benefit schemesekample. This chapter is de-
voted to the application of Semi-Markov processes in theaaespecially with respect
to the derivation of the conditional and unconditional dsttion of labor market states.
To this end, a basic introduction to Semi-Markov theory igegifirst. Then, we show
how to determine the transition probabilities between tabarket states and the limiting
distribution of states by means of the labor market modenhfamapter 3, where a Semi-
Markov structure appears in the setup. Since the calculagquires the application of
numerical integration methods, two selected methods,db&mngle and the trapeze ap-
proximation, are introduced and compared with respect@atturacy of their numerical
results for different step numbers.

Based on a specific labor market example and with constauabrates, a step width
of about1/4 appears to be accurate enough for precise results when tgrigapeze
rule. For the rectangle method, results are equally acbleptd a step width not more
than1/32. Regarding the limiting distribution, the trapeze methotivées a very good
approximation already at step widtli4 with the error bein@% within the chosen pre-
ciseness. Also here, the rectangle method requires a muststap width.

For duration-dependent arrival rates, the transitiorsrate taken from our labor mar-
ket model of chapter 3. Also in this case, the transition pholties of both numerical
integration methods approach a limiting value. Again, tia@éze method for the tran-
sition probabilities atr = 500 converge better to the numerical limiting probabilities
computed by both the trapeze method and the rectangle method

Altogether, the trapeze method is a much more precise methodich smaller step
numbers and, therefore, provides higher computation efftyi. Hence, for the transition
probabilities of our labor market model it is reasonablerefgr this slightly complexer
method over the rectangle method while using less steps.





