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9.1 A vintage capital structure - deriving (10)

Vintage-specific technologies are given by (1). Labour mobility implies equality of nominal
wages for all vintages j, wj = w0 ∀j. The wage rate implied by vintage j is given by

wj = pc (1− α)
³

Kj

AjLj

´α
Aj. The wage rate of vintage 0 is w0 = pc (1− α)

³
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A0.

Equality of wages for vintages 0 and j implies labour allocation to vintage j relative to
vintage 0 of
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Inserting into the labour market clearing condition Σq
j=0Lj = L yields
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where K ≡ K0 + A
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. Total output is then given by

Y = Y0 + ...+ Yq =
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K0 +K1A

1−α
α + ...+KqA
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9.2 The budget constraint (20)

Real wealth a of households is given by the sum of the number kj of units of capital of
vintage j held by the household times their real price vj/pY ,

a = Σq+1
j=0kj

vj
pY

. (57)

For reasons that will become clear in a moment, the sum extends from 0 to q + 1, though
the most advanced vintage is vintage q and household therefore can not own any capital of
vintage q+1. Households trade only capital goods of the most recent vintage. The allocation
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of older capital goods is fixed (in equilibrium, households would be indifferent about trading
old capital goods). Capital held by households therefore follows for old vintages j

dkj = −δkjdt, ∀j < q, (58)

for the most recent one

dkq =

Ã
Σq+1
j=0w

K
j kj + pcw − pRi− pcc

vq
− δkq

!
dt, (59)

and for the next vintage q + 1

dkq+1 = κ
i

R
dq. (60)

The capital stock kq in (59) of a household increases in a deterministic fashion when the
difference between actual nominal income and spending, Σq+1

j=0w
K
j kj+pcw−pRi−pcc, divided

by the price vq of an installed or the price pI of a new unit of capital exceeds losses δkq of
capital due to depreciation. Capital income Σq+1

j=0w
K
j kj of households is given by nominal

factor rewards wK
j for capital from (13) times the amount of capital kj, summed up over all

vintages.
Equation (60) shows that in the case of a successful R&D project, i.e. when dq = 1, the

household obtains the share i/R, real individual investment i relative to real total investment
R, of total payoffs κ. A successful research project therefore increases the capital stock of
vintage q + 1 held by the household from 0 to κi/R. After that, equation (59) applies to
vintage q + 1.
The price of a vintage j in terms of the numeraire good is given by (15) with (3). Hence,

letting vintage prices evolve in all generality as

d
vj
pY
= αj

vj
pY

dt− γs
vj
pY

dq, (61)

we know that the deterministic change of the real price vj/pY must be zero, αj = 0 ∀j = 0...q.
When research is successful, the price of a unit of a given vintage j in terms of the numeraire
good drops as then, by (15) and (3), ṽj/p̃Y = Bj−(q+1).22 Hence, as d (vj/pY ) = ṽj/p̃Y−vj/pY ,
we have d (vj/pY ) = Bj−(q+1) −Bj−q. As a consequence and with (61),

−γs =
d (vj/pY )

vj/pY
=

Bj−(q+1) −Bj−q

Bj−q =
1−B

B
< 0,

which is identical for all vintages j ≤ q. Real vintage prices (61) therefore evolve according
to

d
vj
pY
= −B − 1

B

vj
pY

dq ∀j ≤ q. (62)

This equation reflects the economic depreciation of old vintages relative to the numeraire
good when a new vintage has been developed.

22A tilde (~) denotes the value of a quantity immediately after successful research.
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We can now derive the budget constraint by computing the differential da = Σq+1
j=0d

³
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´
.

For all vintages 0 < j < q, we obtain with (58) and (62) and using Ito’s Lemma
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For the currently most advanced vintage q, we use (59) and (62) to obtain
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For the next vintage q+1 to come, from (60) and with a real price ṽq+1/p̃Y for the prototype
after successful R&D, i.e. only when the good κ exists,

d
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The real price equals unity, ṽq+1/p̃Y = 1 from (15). Hence, κ stands for the number of
consumption goods that can be exchanged for the prototype. This is in accordance with the
definition of real wealth in (57) which also is the number of consumption goods that can be
exchanged for a.
Summarizing, we obtain23
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23Here we need assets a to equal the sum over all vintages including the not-yet-existing one q + 1 as we
need to include the development of κ in (63).

30



where the last equality used (13). As (15) tells us pIBj = Bqvj and pc = pI by (3), we can
replace Bj by Bj = Bqvj/pc and obtain

da =

µ
Bq ∂Y

∂K
Σq+1
j=0

vj
pY

kj − δa+ w − i− c

¶
dt+

µ
κ
i

R
− B − 1

B
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¶
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= (ra+ w − i− c) dt+

µ
κ
i

R
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¶
dq,

where the interest rate r and s are defined as r ≡ Bq ∂Y
∂K
− δ and s ≡ B−1

B
.

9.3 The cyclical components in section 3.1

9.3.1 The Bellman equation and first order conditions

The Bellman equations is (cf. e.g. Dixit and Pindyck, 1994, Sennewald, 2004, or Sennewald
and Wälde, 2004)

ρV (a, q) = max {u (c) + Va (a, q) [ra+ w − i− c] + λ [V (ã, q + 1)− V (a, q)]} (64)

where ã = (1− s) a+ κ
i

R
. (65)

The first order conditions for consumption and real investment i in R&D are

u0 (c) = Va (a, q) , (66)

Va (a, q) = λ
V (ã, q + 1)

di
⇔ Va (a, q) = λVã (ã, q + 1)κ

1

R
. (67)

9.3.2 The Keynes-Ramsey rule

(This section uses, combines and extends Wälde, 1999 and Wälde, 2005). The marginal
value of a unit of wealth Va (a, q) is a function of both assets a and of the technological level
q. The differential of the marginal value reads

dVa (a, q) = Vaa (a, q) [ra+ w − i− c] dt+ [Vã (ã, q + 1)− Va (a, q)] dq (68)

where ã is as in (65). The partial derivative of the maximized Bellman equation using the
envelope theorem reads

ρVa (a, q) = Vaa (a, q) [ra+ w − i− c] + Va (a, q) r + λ [Va (ã, q + 1)− Va (a, q)]

= Vaa (a, q) [ra+ w − i− c] + Va (a, q) r + λ [(1− s)Vã (ã, q + 1)− Va (a, q)]

where the last equality used (65). With Va ≡ Va (a, q), Vaa ≡ Vaa (a, q) and Vã ≡ Vã (ã, q + 1)
and rearranging this reads [ρ− r + λ]Va − λ (1− s)Vã = Vaa [ra+ w − i− c] . Replacing
Vaa [ra+ w − i− c] in (68) by this expression gives

dVa = [(ρ− r + λ)Va − (1− s)λVã] dt+ [Vã − Va] dq (69)
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and with Va being replaced by marginal utility u0 (c) from (66)

du0 (c) = [(ρ− r + λ)u0 (c)− (1− s)λu0 (c̃)] dt+ [u0 (c̃)− u0 (c)] dq

= [(ρ− r)u0 (c) + λ [u0 (c)− (1− s)u0 (c̃)]] dt+ [u0 (c̃)− u0 (c)] dq.

Now let f (.) be the inverse function for u0 (c) , i.e. f (u0 (c)) = c, and apply Ito’s Lemma
to f (u0 (c)) . As f (u0 (c)) = c, f 0 (.) = df(u0(c))

du0(c) = dc
du0(c) =

1
u00(c) and f (u0 (c̃)) = c̃, this yields

df (u0 (c)) =
1

u00 (c)
{u0 (c) [ρ− r] + λ [u0 (c)− (1− s)u0 (c̃)]} dt+ [c̃− c] dq ⇔

dc = − u0 (c)

u00 (c)

½
r − ρ− λ

∙
1− (1− s)

u0 (c̃)

u0 (c)

¸¾
dt+ {c̃− c} dq. (70)

9.3.3 Cyclical components (24) to (27)

This section derives the reduced form in the cyclical components K̂ and Ĉ, whereK = K̂Aq/α

and C = ĈAq as in (23). Assuming a representative agent, we aggregate by replacing
individual consumption c by aggregate consumption C. We start with (24).
The differential of Ĉ is, given the Keynes-Ramsey rule in (70) and using Ito’s Lemma,

dĈ = d
¡
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¢
= A−q
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³
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´
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´
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⎤⎦ dt
+
n
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o
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³
Ĉ
´
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Ĉ
´
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A
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C
´
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³
Ĉ
´
⎤⎦⎫⎬⎭ dt+

n
˜̂
C − Ĉ

o
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where for the last step we used properties of the CES instantaneous utility function (19).
This equation is equivalent to (24) in the text.
We now derive (25). With (66) and rearranging, we get for the first order condition for

R&D investment (67)

u0 (C) = λu0
³
C̃
´
κ
1

R
. (71)

The ratio of marginal utilities is in terms of cyclical components with (23)

u0
³
C̃
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u0 (C)
=

µ
C
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¶σ
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Ã
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!σ
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Ã
Ĉ

A
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C

!σ

=
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³
A
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C
´

u0
³
Ĉ
´ , (72)

where the first and last equality sign uses the definition of the instantaneous utility function
in (19). Inserting κ from (7) and R from (4) with D from (5), we get for the RHS of (71)

λκ

R
=

λκ

λ1/(1−γ)D
= λ−γ/(1−γ)

κ

D
= λ−γ/(1−γ)

κ0
D0

(73)
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By inserting (72) and (73) into (71) we get (25) in the text.
Third we derive (26). As from (4) and (5)

R = λ1/(1−γ)D = λ1/(1−γ)D0K
c, (74)

and by (17) and (23)
Kc = B−qK = B−qK̂Aq/α = AqK̂ (75)

productivity adjusted resources allocated to R&D are independent of q as well,

R̂ ≡ A−qR = λ1/(1−γ)D0K̂. (76)

Finally, to get (27), combine the equation (14) describing the evolution of the capital
index together with the goods market clearing condition (2), yielding

dK = (Bq [Y −R− C]− δK) dt+Bq+1κdq. (77)

Again, with Ito’s Lemma,

dK̂ = d
¡
KA−q/α

¢
=
n
A−q/αBq [Y −R− C]− δK̂

o
dt

+
©¡
K +Bq+1κ

¢
A−(q+1)/α −KA−q/α

ª
dq

=
n
Ŷ −A−qR− Ĉ − δK̂

o
dt+

©
A−1/α +A−1κ0 − 1

ª
K̂dq

where we used
Aq/αB−q = Aq/αA−

1−α
α

q = Aq (78)

which implies A−q/αBqC = Ĉ and A−q/αBqY = K̂αL1−α ≡ Ŷ for the deterministic part.
For the stochastic part, we used (7), (17) and (23) and got¡

K +Bq+1κ
¢
A−(q+1)/α −KA−q/α =

¡
K +Bq+1κ0B

−qK
¢
A−q/αA−1/α −KA−q/α

=
¡
A−1/α +A−1κ0 − 1

¢
K̂.

9.4 Proof of theorem 1 (linear policy rule)

The proof proceeds as follows. We first assume that a solution exists where consumption is
a constant share Ψ of capital, Ĉ = ΨK̂. Then we show under which parameter restrictions
this is consistent with equilibrium and optimality conditions.24

(i) From (27), the jump of capital is constant,

˜̂
K/K̂ = A−1κ0 +A−1/α. (79)

Now assume Ĉ = ΨK̂. Then, by (79)

˜̂
C/Ĉ =

˜̂
K/K̂ = A−1κ0 +A−1/α ≡ A−1ξ, (80)

24One could alternatively guess a value function and show that it satisfies the Bellman equation and first
order conditions. This alternative approach would provide a proof of a verification theorem and leads of
course to identical results.
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i.e. consumption jumps in the same way as capital. This is (33) and the definition of ξ with
(12) is (30) in the theorem.
As this jump is constant, the arrival rate by the investment first order condition (25)

is constant as well. Inserting ξ from (80) into (25) gives ξσ = λ−γ/(1−γ)κ0D
−1
0 ⇔ λ =¡

ξ−σκ0D
−1
0

¢(1−γ)/γ
. This is (29) in the theorem.

(ii) Our system (24) to (27) reduces by inserting (26) and (80) to a set of two equations
determining Ĉ and K̂ as a function of Ĉ and K̂ and constant parameters (λ, ξ, κ0,D0) . Using
the abbreviations

ρ̂ = ρ+ λ
£
1− (1− s) ξ−σ

¤
, δ̂ = δ + λ1/(1−γ)D0, (81)

this reads

−
u00
³
Ĉ
´

u0
³
Ĉ
´ dĈ = {r − ρ̂} dt−

u00
³
Ĉ
´

u0
³
Ĉ
´ ©A−1ξ − 1ª Ĉdq,

dK̂ =
n
Ŷ − Ĉ − δ̂K̂

o
dt+

©
A−1/α +A−1κ0 − 1

ª
K̂dq.

(iii) We now show that with α = σ, consumption is a linear function of the capital index.
Assume, this is the case. Then,

˙̂
C

Ĉ
=
˙̂
K

K̂
⇔ r − ρ̂

σ
=

Ŷ − Ĉ − δ̂K̂

K̂
⇔Ã

∂Ŷ

∂K̂
− δ

!
K̂ − ρ̂K̂ = σŶ − σΨK̂ − σ

³
δ + λ1/(1−γ)D0

´
K̂ ⇔

(α− σ) Ŷ = K̂
h
ρ̂− σ

³
Ψ+ λ1/(1−γ)D0

´
+ (1− σ) δ

i
.

A sufficient condition is therefore σ = α and Ψ = ρ̂+(1−σ)δ
σ

− λ1/(1−γ)D0. Reinserting (81),
this proves (32) and thereby (31).

9.5 Results related to figure 2

As the observed capital stock (17) is by (75) proportional to K, Kc behaves quantitatively
in an identical way as the capital index K as long as no jump occurs. Computing the jump
of the observed capital stock by applying (75) to (33), however, shows with (17)

A−1ξ =
K̃cA−(q+1)

KcA−q
⇔ ξ =

K̃c

Kc
= B−1

K̃

K
. (82)

Resources allocated to R&D are given by (74) and (75) by

R = λ1/(1−γ)D0A
−qK̂. (83)
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Over the cycle, they increase as capital does. The behaviour after a jump is not obvious as
Aq increases but K̂ decreases. Compute with (33)

R̃

R
=
˜̂
KAq+1

K̂Aq
= ξ =

K̃c

Kc
(84)

As this is the same expression as for the observed capital stock (82), the same arguments
apply here.
Aggregate consumption changes according to (33). With (23), we have

C̃

C
= ξ =

K̃c

Kc
. (85)

Investment is given by (2) as I = Y − R − C. The jump in investment can be deduced
with (10), (82), (84) and (85) from

Ĩ

I
=

Bq+1 [(Bξ)α Y − ξ [R+ C]]− δBξK

Bq [Y −R− C]− δK
=

B
h
(Bξ)−(1−α) Y −B−1 [R+ C]

i
−B−qδK

Y −R− C −B−qδK
Bξ

=
B (Bξ)−(1−α) Y −R− C −B−qδK

Y −R− C −B−qδK
Bξ > 1.

The inequality follows from the following reasoning. As Bξ > 1 by (30) and B (Bξ)−(1−α) =
Bαξ−(1−α) = (A−1ξ)

−(1−α)
> 1 as well by (35), Ĩ/I > 1.

9.6 The expected growth rate (40)

The growth rate between t and T is

gT,t ≡ lnY (T )− lnY (t)

= q (T ) lnA+ α ln K̂ (T ) + (1− α) lnL−
h
q (t) lnA+ α ln K̂ (t) + (1− α) lnL

i
= (q (T )− q (t)) lnA+ α

h
ln K̂ (T )− ln K̂ (t)

i
.

UsingE [q (t)− λt] = 0, i.e. the martingale property of q (t)−λt, the expected growth rate for
a period of length T−t is then EtgT,t = lnAλ [T − t]+α

h
Et ln K̂ (T )− ln K̂ (t)

i
. Computing

the expected growth rate per unit of time gives Egt ≡ EtgT,t
T−t = λ lnA+ αEt ln K̂(T )−ln K̂(t)

T−t .

9.7 The derivative of the arrival rate (41)

In order to understand the sign of the derivative of the arrival rate (41) with respect to κ0
under γ > 0, it is enough to understand the sign of the following derivative,

d

dκ0

κ0
[κ0 +B−1]σ

=
[κ0 +B−1]

σ − σ [κ0 +B−1]
σ−1

κ0

[κ0 +B−1]2σ
> 0⇔

κ0 +B−1 > σκ0 ⇔ (1− σ)κ0 +B−1 > 0.

This is positive e.g. for our assumption σ = α < 1.
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9.8 An optimal constant saving rate

This proves theorem 2. The structure of the proof is identical to the proof of theorem 1 in
9.4. We again assume that a solution exists where, now, consumption is a constant share Ψ of
output, Ĉ = ΨK̂αL1−α. Then we show under which parameter restrictions this is consistent
with equilibrium and optimality conditions.
(i) As before, the jump of capital is given by (79). Assuming Ĉ = ΨK̂αL1−α,

˜̂
C

Ĉ
=

Ã
˜̂
K

K̂

!α

=
¡
A−1κ0 +A−1/α

¢α
=
¡
A−1ξ

¢α
, (86)

where ξ is defined as in (30).
The arrival rate by the investment first order condition (25) is again constant. Inserting

(86) into (25) gives¡
A
¡
A−1ξ

¢α¢σ
= λ−γ/(1−γ)κ0/D0 ⇔ λ =

³¡
A1−αξα

¢−σ
κ0/D0

´(1−γ)/γ
. (87)

(ii) Our system (24) to (27) reduces by inserting (26) and (86) to a set of two equations
determining Ĉ and K̂ as a function of Ĉ and K̂ and constant parameters (λ, ξ, κ0,D0) . Using
the abbreviations

ρ̄ = ρ+ λ
h
1− (1− s)

¡
A1−αξα

¢−σi
, δ̄ = δ + λ1/(1−γ)D0, (88)

we get

−
u00
³
Ĉ
´

u0
³
Ĉ
´ dĈ = {r − ρ̄} dt−

u00
³
Ĉ
´

u0
³
Ĉ
´ ©¡A−1ξ¢α − 1ª Ĉdq,

dK̂ =
n
Ŷ − Ĉ − δ̄K̂

o
dt+

©
A−1/α +A−1κ0 − 1

ª
K̂dq.

(iii) Given our assumption Ĉ = ΨK̂αL1−α,

˙̂
C

Ĉ
= α

˙̂
K

K̂
⇔ r − ρ̄

σ
= α

Ŷ −ΨK̂αL1−α − δ̄K̂

K̂
⇔Ã

∂Ŷ

∂K̂
− δ

!
K̂ − ρ̄K̂ = σαŶ − σαΨK̂αL1−α − σα

³
δ + λ1/(1−γ)D0

´
K̂ ⇔

(α− ασ + ασΨ) Ŷ =
³
δ + ρ̄− σα

³
δ + λ1/(1−γ)D0

´´
K̂

=
³
(1− σα) δ + ρ̄− σλ1/(1−γ)D0

´
K̂.

This holds for Ψ = σ−1
σ
and (1− σα) δ + ρ̄ = σλ1/(1−γ)D0 as this makes both sides equal

to zero. While the first condition requires a saving rate of s = 1 − Ψ = 1/σ, the second
condition requires with (88)

(1− ασ) δ + ρ+ λ
h
1− (1− s)

¡
A1−αξα

¢−σi
= σλ1/(1−γ)D0 (89)
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which is (46) in the text. This completes the proof of the theorem.

In order to better understand (89), we now rearrange λ
h
1− (1− s) (A1−αξα)

−σ
i
=

σλ1/(1−γ)D0 and then insert the expression for the arrival rate (87),

λ
h
1− (1− s)

¡
A1−αξα

¢−σi
= σλ1/(1−γ)D0 ⇔

λ
h
1− (1− s)

¡
A1−αξα

¢−σi− σλ1/(1−γ)D0 = 0⇔

λ
h
1− (1− s)

¡
A1−αξα

¢−σ − σλγ/(1−γ)D0

i
= 0⇔

λ
h
1− (1− s)

¡
A1−αξα

¢−σ − σ
¡
A1−αξα

¢−σ
κ0
i
= 0⇔

λ
¡
A1−αξα

¢−σ £¡
A1−αξα

¢σ − (1− s)− σκ0
¤
= 0⇔

λ
¡
A1−αξα

¢−σ £
A(1−α)σ

¡
κ0 +B−1

¢ασ −B−1 − σκ0
¤
= 0

As κ0 is close to zero, approximating the expression in squared brackets for κ0 = 0 gives£
A(1−α)σB−ασ −B−1

¤
= 1−B−1. As this is close to zero, σ implied by (89) is similar to its

value in deterministic models as discussed in the text.
The jump in consumption, referred to in footnote 20, follows from (86) with (23) and

(30)

C̃

C
=
˜̂
CAq+1

ĈAq
= A

¡
A−1ξ

¢α
=
¡
B
£
κ0 +B−1

¤¢α
= (Bκ0 + 1)

α .

9.9 An alternative difficulty function

9.9.1 The new reduced form

When the difficulty function is given by (6), the reduced form system (24) to (27) changes.
The Keynes-Ramsey rule (24) remains unchanged. As (73) now reads λκ

R
= λκ

λ1/(1−γ)D
=

λ−γ/(1−γ) κ
D
= λ−γ/(1−γ) κ0K̂

D0
, (25) becomes

u0
³
Ĉ
´
= u0

³
A
˜̂
C
´
λ−γ/(1−γ)

κ0K̂

D0
. (90)

The third equation (26) changes as from (4) and (6)

R = λ1/(1−γ)D = λ1/(1−γ)D0A
q (91)

and therefore
R̂ ≡ A−qR = λ1/(1−γ)D0. (92)

while (27) remains unchanged.
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9.9.2 The proof of theorem 3

(i) Assume a solution where Ĉ = ΨK̂ exists.25 Then ˜̂C/Ĉ = ˜̂
K/K̂ = A−1κ0+A−1/α ≡ A−1ξ

as in (80) and with (90)

ξσ = λ−γ/(1−γ)
κ0K̂

D0
⇔ λ =

Ã
ξ−σ

κ0K̂

D0

!(1−γ)/γ
. (93)

(ii) With (92), the resource constraint (27) reads

dK̂ =
n
Ŷ − λ1/(1−γ)D0 − Ĉ − δK̂

o
dt+

©
A−1/α +A−1κ0 − 1

ª
K̂dq.

Inserting (90) into the Keynes-Ramsey rule (24) gives with (93) for the last equality

−
u00
³
Ĉ
´

u0
³
Ĉ
´ dĈ =

½
α
³
L/K̂

´1−α
− δ − ρ− λ

∙
1− (1− s)λγ/(1−γ)

D0

κ0K̂

¸¾
dt

−
u00
³
Ĉ
´

u0
³
Ĉ
´ n ˜̂C − Ĉ

o
dq

=

½
α
³
L/K̂

´1−α
− δ − ρ− λ

£
1− (1− s) ξ−σ

¤¾
dt−

u00
³
Ĉ
´

u0
³
Ĉ
´ n ˜̂C − Ĉ

o
dq.

(iii) Hence, with Ĉ = ΨK̂,

˙̂
C

Ĉ
=
˙̂
K

K̂
⇔

α
³
L/K̂

´1−α
− δ − ρ− λ

£
1− (1− s) ξ−σ

¤
σ

=
Ŷ − λ1/(1−γ)D0 − (Ψ+ δ) K̂

K̂
⇔

αŶ − (δ + ρ) K̂ − λ
£
1− (1− s) ξ−σ

¤
K̂ = σŶ − σλ1/(1−γ)D0 − σ (Ψ+ δ) K̂ ⇔

(α− σ) Ŷ − λ
£
1− (1− s) ξ−σ

¤
K̂ + σλ1/(1−γ)D0 = (δ + ρ− σ (Ψ+ δ)) K̂.

25We present no solution for Ĉ = Ψ̄K̂αL1−α. Such a solution can not easily be found for the present
setup but is straightforward if an additional parameter, say a R&D subsidy financed through lump-sum
tax, is introduced. Results concerning the arrival rate and cyclical behaviour of R&D expenditure are then
qualitatively identical.
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This holds for α = σ, Ψ = (1−σ)δ+ρ
σ

and

λ
£
1− (1− s) ξ−σ

¤
K̂ = σλ1/(1−γ)D0 ⇔Ã

ξ−σ
κ0K̂

D0

!(1−γ)/γ £
1− (1− s) ξ−σ

¤
K̂ = σ

Ã
ξ−σ

κ0K̂

D0

!1/γ
D0 ⇔¡

ξ−σκ0
¢(1−γ)/γ £

1− (1− s) ξ−σ
¤
= σ

¡
ξ−σκ0

¢1/γ ⇔
1− (1− s) ξ−σ = σξ−σκ0 ⇔ 1 = (1− s+ σκ0) ξ

−σ ⇔¡
B−1 + κ0

¢σ
= B−1 + σκ0

where we used 1−s = B−1 from (22) and the definition of ξ in (30). For reasonable parameter
values, this holds for a certain κ0 lying in the required interval [0,1]. This completes the
proof of 3.

Inserting (93) in (91) gives R =
³
ξ−σ κ0K̂

D0

´1/γ
D0A

q which implies a cyclical component

of capital of R̂ =
³
ξ−σ κ0K̂

D0

´1/γ
D0 as in the text.

9.10 A multi-sector version

Labour’s marginal productivity in sector j and k are

∂Y

∂Lj
=

£
ΠN
i=1,i6=j

¡
ΓiK

αi
i (A

qiLi)
1−αi

¢γi¤ ¡ΓjKαj
j Aqj [1−αj ]

¢γj (1− αj) γjL
(1−αj)γj−1
j ,

∂Y

∂Lk
=

£
ΠN
i=1,i6=k

¡
ΓiK

αi
i (A

qiLi)
1−αi

¢γi¤ ¡ΓkKαk
k Aqk[1−αk]

¢γk (1− αk) γkL
(1−αk)γk−1
k .

These are the same when¡
ΓkK

αk
k (A

qkLk)
1−αk

¢γk ¡ΓjKαj
j Aqj [1−αj ]

¢γj (1− αj) γjL
(1−αj)γj−1
j

=
¡
ΓjK

αj
j (A

qjLj)
1−αj

¢γj ¡ΓkKαk
k Aqk[1−αk]

¢γk (1− αk) γkL
(1−αk)γk−1
k ⇔

Lk (1− αj) γj = Lj (1− αk) γk

Labour market clearing requires L1 + L2 + ...+ LN = L which implies upon inserting

L1 +
(1− α2) γ2
(1− α1) γ1

L1 + ...+
(1− αN) γN
(1− α1) γ1

L1 = L⇔

((1− α1) γ1 + (1− α2) γ2 + ...+ (1− αN) γN)
L1

(1− α1) γ1
= L <≡>

L1 =
(1− α1) γ1

Γ
L.

Doing the same for capital gives Ki =
αiγi
∆

K, given an appropriate definition for ∆. By
putting all constants, including Γi, into Y0, the aggregate technology (51) becomes (53) in
the text,

Y = Y0Π
N
i=1

¡
KαiL1−αi

¢γi ΠN
i=1A

qi(1−αi)γi = Y0A
ΣNi=1qi(1−αi)γiKΣNi=1αiγiLΣNi=1(1−αi)γi .
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