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A.1 Solution of the maximization problem

A.1.1 The Bellman equation

We start from the general speci�cation of a Bellman equation in continuous time under un-
certainty (see Wälde, 1999 or Sennewald, 2007). Given the objective function (11), the state
variable W (t) and the control m (t), it reads

�V (W (t)) = max
m(t)

�
u (W (t))� v (m (t)) + 1

dt
EtdV (W (t))

�
: (A.1)

The di¤erential of the value function reads, given the law of motion in (12) for W (t) (see e.g.
Wälde, 2012, ch. 10.2.3),

dV (W (t)) = V 0 (W (t))
n
�
p

b
W (t)� �0W (t)� �1m (t)

o
dt

+ fV (W (t)� �g (t))� V (W (t))g dqg (t)
+ fV (W (t)��(t))� V (W (t))g dq� (t) :

Forming expectations Et yields

dV (W (t)) = V 0 (W (t))
n
�
p

b
W (t)� �0W (t)� �1m (t)

o
dt

+ Eh fV (W (t)� �g (t))� V (W (t))g�gdt
+ E� fV (W (t)��(t))� V (W (t))g�� (W (t)) dt; (A.2)

where we assume that the jump size of g (t) in (1) and the frequency of jumps of qg (t) are
independent, as is the stress e¤ect �(t) of an outburst and the corresponding Poisson process
q� (t). All sources of uncertainty are taken into account when the expectations operator Et is
applied. As the expected numbers of jump of qg (t) over a small time interval dt is given by
�gdt; only the expectations with respect to g (t) need to be formed. They are denoted by Eh as
this expectation refers to the random size of h (t) in (1). The same reasoning holds for random
outburst e¤ects �(t) where expectations are denoted by E�:
Using the de�nition of � in (13), dividing by dt and replacing this expression in the above

general speci�cation (A.1) yields

�V (W (t)) = max
m(t)

8<: u (W (t))� v0m (t)1+� + V 0 (W (t)) [�W (t)� �1m (t)]
+�g

�
EhV (W (t)� �g (t))� V (W (t))

�
+�� (W (t))

�
EhV (W (t)��(t))� V (W (t))

�
9=; : (A.3)

The utility function u (W (t)) is given by the expression from (10).
The �rst-order condition for m (t) in (A.3) requires

(1 + �) v0m (t)
� = �V 0 (W (t)) �1: (A.4)

Assuming an interior solution, marginal costs from coping on the left-hand side must equal
marginal gains on the right. As stress W (t) is �a bad�and not a good, V 0 (W (t)) is negative
and the right-hand side of this �rst-order condition indeed re�ects a positive marginal gain.
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A.1.2 Solving by guess and verify

We start with a guess J (W ) for the value function V (W ) which reads J (W ) = �0��1W: The
guess implies J 0 (W ) = ��1 and gives us two free parameters, �0 and �1: We need to verify
that this guess satis�es the �rst-order condition and the Bellman equation.
The �rst-order condition (A.4) is satis�ed if

(1 + �) v0m
� = �1�1: (A.5)

Concerning the Bellman equation and given the guess, the jump terms read

EhV (W � �g)� V (W ) = Eh (�0 � �1 [W � �g])� (�0 � �1W )
= �0 � �1

�
W � �Ehg

�
� �0 + �1W

= �1�E
hg

and

E�V (W ��)� V (W (t)) = E� (�0 � �1 [W ��])� (�0 � �1W )
= �0 � �1

�
W � ��

�
� �0 + �1W

= �1�
�:

The Bellman equation (A.3) as a whole then reads

� [�0 � �1W ]
= �w [M � �W ] e� �W � v0m1+� � �1 [�W � �1m] + �g�1�Ehg + �� (W ) �1��

= �wMe� (�w�e+ �)W � v0m1+� � �1
�
�W � �1m� �g�Ehg � �� (W )��

�
(A.6)

where the utility function from (10) for W < W s was employed.
Note that for W � W s; the Bellman equation reads

� [�0 � �1W ] = ��W � v0m1+� � �1
�
�sW � �1m� �g�Ehg � �� (W )��

�
as �wM � (�w�+ �)W turns into ��W from (10). Only the direct negative e¤ect of stress
matters. The attention e¤ect is no longer there as the individual is o¤ the job. Mechanically
speaking, the Bellman equation for W > W s is a special case of the Bellman equation for
W � W s where w = 0 and � = �s:
Now collect constant terms and terms proportional to W in (A.6),

��0 � ��1W = �wMe� (�w�e+ �)W � v0m1+� � �1�W � �1
�
��1m� �g�Ehg � �� (W )��

�
,

��0 � �wMe+ v0m1+� � �1
�
�1m+ �

g�Ehg + �� (W )��
�
= ((�� �)�1 � (�w�e+ �))W:

(A.7)

As the arrival rate for outbursts �� (W ) is a constant from (7) for all stress levels, we treat it
as a constant here.
The Bellman equation (A.7) holds if two conditions are ful�lled simultaneously. The �rst

makes sure that the right-hand side equals zero. This pins down the �rst parameter of the
value function,

�1 =
�w�e+ �

�� � : (A.8)

The second makes sure that the left-hand side equals zero and pins down the second parameter
�0;

��0 = �wMe� v0m1+� +
�w�e+ �

�� �
�
�1m+ �

g�Ehg + �� (W )��
�

= �wMe� v0m1+� +
�w�e+ �

�� �
�
�1m+ �

g�
�
�h � �

�
+ �� (W )��

�
(A.9)
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where we used
Ehg = �h � � (A.10)

which follows from (1) and the de�nition of �h and � before (1).
Note that optimal coping from (A.5) with (A.8) is given by

(1 + �) v0m
� =

�w�e+ �

�� � �1 , m =

�
�w�e+ �

�� �
�1

(1 + �) v0

�1=�
:

For the case where the individual is sick and earns no wage, w = 0 as discussed after (A.6),
coping ms while sick drops relative to standard coping m to

ms =

�
�

�� �s
�1

(1 + �) v0

�1=�
:

A.1.3 The value function in closed form

When we plug in values for �0 and �1 into our veri�ed guess, we obtain the value of optimal
behaviour. We obtain three versions, one for each range of W described after (11),

V (W ) = �0 � �1W

=

8>><>>:
�
[0; �W [
0 � �w�e+�

��� W

�
[ �W;W s[
0 � �w�e+�

��� W

�
[W s;1[
0 � �

���W

9>>=>>; for W 2

8<:
�
0; �W

��
�W;W s

�
[W s;1[

;

where the �0 are versions of the value from (A.9). In detail,

��0 =

8><>:
�wMe� v0m1+� + �w�e+�

���
�
�1m+ �

g�
�
�h � �

��
�wMe� v0m1+� + �w�e+�

���
�
�1m+ �

g�
�
�h � �

�
+ �����

�
�v0 [ms]1+� + �

���
�
�1m+ �

g�
�
�h � �

�
+ �����

�
9>=>; for W 2

8<:
�
0; �W

��
�W;W s

�
[W s;1[

:

The value function is discontinuous at �W with unchanged slope and (apart from a special
case) discontinuous at W s with a kink. The discontinuity at �W results from the occurrence of
outbursts. The discontinuity at W s results from the drop of p to ps and the kink is due to the
change in coping intensity.

Figure 8 The value function as a function of stress W with the tolerance level �W and the
sickness-level W s
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A.2 Proof of the outburst theorem

Proof of (i): The stress level rises by (15a) if �W (t)� �1m > 0: When � = �� = �1m= �W , the
deterministic part of (12) is negative for any stress levels W (t) < �W and zero for �W: Hence, if
� > ��; _W (t) > 0 for some W (t) > 0 �the individual is stress prone.
Proof of (ii): We understand the role of W (t) by remembering that from (16) and (13),

W � = �1m
�
= �1m

� p
b
��0 : For a given stress level W (t) ; we can ask whether W � is larger or smaller

than W (t) : Under equality, W (t) = W � = �1m
� p
b
��0 : Solving this for �

p
b
in an attempt to draw

this into �g. 2, we get

�
p

b
=
�1m

W (t)
+ �0 , � =

�1m

W (t)
:

Hence, when � > �1m=W (t) ; W � is smaller than W (t) and the individual is a bad stabilizer.

A.3 The instantaneous expected change of stress

� The di¤erential equation (23) for the instantaneous expected change

When we want to understand how stress changes in expectation for a given stress level
W (t) ; we can proceed as in the derivation of the Bellman equation in app. A.1.1. Instead of
computingEtdV (W (t)) for (A.1), we computeEtdf (W (t)) for some general function f (:) given
the stochastic di¤erential equation for W (t) from (12). Formally, we compute the in�nitesimal
generator as presented e.g. in Protter (1995, ex. V.7), for many applications, see Wälde (2012,
ch. 10.2). We get

Etdf (W (t)) = f 0 (W (t))
n
�
p

b
W (t)� �0W (t)� �1m (t)

o
dt

+ Eh ff (W (t)� �g (t))� f (W (t))g�gdt
+ E� ff (W (t)��(t))� f (W (t))g�� (W (t)) dt;

where the analogy to (A.2) is obvious. Specifying f (x) = x to be the identity function and
dividing by dt we get

EtdW (t)

dt
= �W (t)� �1m (t)� �g�Ehg (t)� �� (W (t))E��(t)

= �W (t)� �1m (t)� �g�
�
�h � �

�
� �� (W (t))E��(t)

where the second equality used (A.10). When we take the di¤erent stress regions from (12)
into account with the corresponding optimal coping levels from (14) and we de�ne 
 � �1m+
�g�

�
�h � �

�
and 
s � �1ms + �g�

�
�h � �

�
as in the main text after (23), we obtain

EtdW (t)

dt
=

8<:
� W (t)� 

� W (t)� 
� �����
�sW (t)� 
s � �����

9=; for

8<:
0 < W (t) � �W
�W < W (t) < W s

W s � W (t)
;

where �� is the mean of �(t) as de�ned after (5).57

57I am deeply indebted to Matthias Birkner from the Institute for Mathematics at the Johannes Gutenberg
University Mainz for explaining the more subtle issues related to these applications to me. See Birkner et
al. (2017) for work in progress studying an analytical description of the density of stress building on forward
Kolmogorov equations.
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� Does stress fall?

Under which conditions can we expect stress to fall? Focusing on 0 < W (t) � �W to start
with, the answer is given by

EtdW (t)

dt
< 0, �W (t) < 
:

To understand this condition in detail, one should distinguish four cases: � ? ��� and 
 ? 0
where the sign of ��� from (24) is given by the sign of 
 de�ned after (23). We can distinguish
these four cases analytically as follows,

case

8>><>>:
a
b
c
d

9>>=>>;,
�

 > 0

 < 0

�
and � su¢ ciently

8>><>>:
small, i.e. � � ��� where ��� > 0
large, i.e. � > ��� where ��� > 0
small, i.e. � < ��� where ��� < 0
large, i.e. � � ��� where ��� < 0

:

The four cases are illustrated in the following �gure.

Figure 9 The expected change of stress for di¤erent signs of � and 
 (case a and b covered
in main text)

It seems natural to consider 
 > 0 to represent the �normal�case. As �1m > 0; the second
term in the de�nition of 
 after (23) needs to be strongly negative to make 
 negative. Even
when the individual under consideration is mildly overcon�dent, i.e. subjective expectations
exceed objective ones, � > �h, 
 would still remain positive. This is the reason for focusing on

 > 0 in the main text.
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The analysis of W (t) > �W proceeds in analogy and is discussed jointly with �g. 6 in the
main text.
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