Designing QE in a fiscally sound monetary union

Tilman Bletzinger (ECB) and Leopold von Thadden (ECB)1

July 2018

1The views expressed in this paper do not necessarily reflect those of the ECB.
Overview of the presentation

1. Motivation
2. The model
3. Results
4. Conclusion
Consider a tractable model of a **monetary union (with potentially asymmetric member countries)** in which the single short-term rate reaches the lower bound constraint

Goal: replicate the allocations and welfare levels that would have prevailed under an unconstrained Taylor-type interest rate rule

Results depend on (in)completeness of MU:

- **Clear-cut results** if MU has a **sound fiscal structure**
- **Complexities arise if fiscal framework is incomplete** *(needs future work in a strategic setting)*
Theory: No obvious theoretical reference point

(Standard) **Dimension 1: Single economy**

"The problem with QE is it works in practice but it doesn’t work in theory" (Ben Bernanke)

(Extra) **Dimension 2: Monetary union**

"... Usually, the fiscal implications are dealt with easily within a one-country framework, between the central bank and the treasury. But in the euro area, there is no European treasury..." (Mario Draghi)

→ **What is lacking?**

Monetary union models which reconcile Eggertsson/Woodford with

1) **Tobin** (portfolio balance channel) and

2) **Mundell** (non-strategic issues) and **Chari/Kehoe** (strategic issues)
Motivation

Reality (2014): Monetary Policy

Inflation at risk to be too low for too long, while MP close to the effective lower bound

What to do?

- **Standard QE recipe** (of stand alone economies)?

 CB to support aggregate demand by purchasing longer-term gov’t debt (**portfolio rebalancing**) plus **forward guidance** (**signalling**)
Reality (2014): Many fiscal policies

Fiscal framework suffers from weak governance of national policies and no appetite for a fiscal union

- Very uneven distribution of fiscal space (and since 2010 loss of market access as a reality)
- Missing notion of aggregate fiscal stance (which matters at ZLB)
- Unclear notion of riskiness of national debt
- Absence of area-wide safe (parts of) govt’ debt (SBBS; Eurobonds)
- Treaty logic (“no bail out”): government budget constraints to be kept separate
Reality (2014): Many fiscal policies

Spirit of no bail-out idea got modified in the course of IMF-type conditional support:

- Logic for programme countries follows Farhi/Tirole (2016), i.e. if fiscal positions of member countries are very different, **ex post solidarity** is reasonable, but this is different from unconditional **ex-ante risk sharing**
Motivation of EA QE is clear: area-wide inflation outlook → SAPI-criteria (sustained adjustment in the path of inflation)

Yet, design of QE in a (fiscally) incomplete MU is non-trivial → it touches on the critical intersection of MP and FP

How to find a compromise between Stimulus vs. Incentives?
→ Brunnermeier et al (2016) "The euro and the battle of ideas"
How to find a compromise between **Stimulus** vs. **Incentives**?

- **Stimulus-camp**: QE needed to boost demand in order to avoid losses from missing the inflation objective

 Avoidance of these losses is particularly important in a MU, since nominal anchoring is key

- **Incentives-camp**: QE is critically seen since it invites for detrimental free-riding of governments

 Erosion of fiscal framework is particularly costly in a MU

 (see: Chari/Kehoe, 2008)
EA QE: Challenges and design issues

Effective compromise is possible:

HICP inflation and inflation expectations (% p.a.)

![Graph showing HICP inflation and inflation expectations](image-url)

Sources: ECB, Eurostat and Consensus Economics Forecast.
Quarterly values: 1999Q1 - 2018Q2
Effective compromise is possible:

→ Eurosystsem has exploited that QE in a MU is a multidimensional tool and has been mindful of incompleteness of EMU.

→ Key parameters of PSPP (in addition to standard ones, known e.g. from US) carefully calibrated at the boundary of MP and FP.

- (Strongly) limited risk sharing (singleness of MP vs. incentives for sound national FPs)
- Portfolio weights (purchases guided by capital key)
- Issuer and issue limits (123-related concerns, avoidance of strategic role in debt restructuring)
EA QE: Challenges and design issues

→ EA QE complements a broad range of other non-standard tools

- **TLTRO’s**: long-term provision of liquidity to banks
- **NIRP**
- (Chained) **Forward guidance**
- **ABSPP, CBPP, CSPP**
- **ELA**: provision of emergency liquidity, no risk sharing
- **OMT**: country-specific support, risk-shared, conditionality
Research agenda:

Role of key parameters to be assessed by model-based work which → recognises current trade-offs (recall: Stimulus vs. Incentives) → allows for feasible changes of EA architecture over time

5PR as a reference point for short vs. long-term outcomes:

"...Progress will have to follow a sequence of short- and longer-term steps, but it is vital to establish and agree the full sequence today. The measures in the short-term will only increase confidence now if they are the start of a larger process, a bridge towards a complete and genuine EMU.” (5PR)

Example: EA safe assets would affect trade-offs
Our approach

→ Analytics of such agenda are tricky
→ Proceed stepwise, use backward induction

Step 1 (Current paper: ”Designing QE in a fiscally sound monetary union”)

- Assume, counterfactually, MU has a complete fiscal framework
- → How to design EA QE in an extended 2-country monetary union model à la Benigno (2004) with
 i) portfolio balance channel (s.t. QE works!) and
 ii) (occasionally) binding lower bound constraint but maintain iii) standard and stable fiscal feedback rules

Step 2 (work in progress: strategic issues)

- Relax iii) and reconsider design of EA QE in an incomplete fiscal set-up
- Idea: consider variation à la Chari/Kehoe (2008) and allow for Nash vs optimal outcomes, i.e. expansionary effects of EA QE to be weighted against adverse incentive effects under non-cooperative FP’s
Our approach

Step 3 (work in progress: non-strategic issues)

- Use country-specific QE in normal times even when interest rates are not constrained
- Idea: create sufficient country-specific instruments in a monetary union, opposing the shortage of instruments as described by Mundell
- Questions: how to optimally design QE in a monetary union above the lower bound? Is the same welfare level as in a single economy for all member states possible?
How to design QE?

Particularly relevant benchmark in a monetary union:

- Outcomes that would have been realised if there had been no lower bound constraint on the common short-term interest rate
Key features

- Analytical starting point: 3-equation New Keynesian model delivers ineffectiveness result of QE at the ZLB
- We embed this model as a parametric special case in a 2-country monetary union model with banks, extending Benigno (2004)
- HH accumulate wealth via deposits (with banks) and real balances, and consume differentiated goods from both countries (\(N, S\)) with home bias
- Banks, acting like mutual funds, invest in short- and long-term government bonds of both countries
- Passive fiscal policy: short- and long-term bonds follow well-behaved feedback rules
Organigram
Real effects of QE

- **Issue:** irrelevance proposition of Wallace (1981) and Eggertsson and Woodford (2003)
 → QE is ineffective at the lower bound constraint

- Tobin and Brainard (1963) observe imperfect substitutability: positive relationship between relative portfolio shares and asset returns

We model the portfolio balancing channel via:

1. imperfect substitutability between bonds of different maturities due to portfolio adjustment costs (Harrison, 2012; Andrés et al., 2004), e.g.:
 - preferences (“preferred habitat” à la Vayanos und Vila, 2009)
 - regulation requirements
 - transaction costs

2. further imperfect substitutability between domestic and foreign long-term bond holdings due to home bias
Deposit rate

- Deposits are claims against the bank’s portfolio of short- and long-term bonds issued in both countries subject to portfolio adjustment costs and home bias in long-term holdings.

→ Rates of return on deposits are weighted averages of short-term and long-term rates and thus heterogeneous across the union:

\[\hat{R}_{D,t}^{N} = \frac{1}{1 + \delta} \hat{R}_{S,t} + \frac{\delta}{1 + \delta} \left[\omega N \hat{R}_{L,t+1}^{N} + (1 - \omega N) \hat{R}_{L,t+1}^{S} \right] \]

- Compared with New Keynesian benchmark, non-negativity of deposit rates replaces ZLB constraint on short-term interest rates.
Central bank

Stylised balance sheet of the central bank in our monetary union:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term bonds</td>
<td>Money in circulation</td>
</tr>
<tr>
<td>αB_{SC}^N</td>
<td>αM_N^N</td>
</tr>
<tr>
<td>$(1 - \alpha) B_{SC}^S$</td>
<td>$(1 - \alpha) M_S^S$</td>
</tr>
<tr>
<td>Long-term bonds</td>
<td></td>
</tr>
<tr>
<td>αQ_N^N</td>
<td></td>
</tr>
<tr>
<td>$(1 - \alpha) Q_S^S$</td>
<td></td>
</tr>
</tbody>
</table>

- **Conventional MP**: short-term Taylor-type interest rate rule (reacting to union-wide inflation rate and output gap)
- Short-term bonds are perfect substitutes to ensure same short-term rate across countries
- **Unconventional MP**: (potentially) country-specific purchases of long-term bonds (“QE”)
- Monetary union allows (via TARGET-balances): $B_{SC}^N + Q^N \neq M^N$
 \rightarrow Additional funding channel for $c^N \neq y^N$
Risk sharing

- Current assumption:
 Regular CB income on short-term bond holdings: **shared**
 QE-related CB income on long-term bond holdings: **not shared**

- Deeper analysis of risk sharing requires strategic setting
Symmetric monetary union

- $N = S$

- Model consists of

\[
\hat{c}_t^N = \hat{c}_{t+1}^N - \sigma \left[\hat{R}_{D,t}^N - \hat{\pi}_{c,t+1}^N - \hat{r}_{n,t}^N \right]
\]

(1)

\[
\hat{\pi}_{c,t}^N = \beta \hat{\pi}_{c,t+1}^N + \frac{\varepsilon - 1}{\chi} (\psi + \frac{1}{\sigma}) \hat{c}_t^N
\]

(2)

\[
\hat{R}_{S,t} = \rho_R \hat{R}_{S,t-1} + (1 - \rho_R) \left[\phi_\pi \hat{\pi}_{c,t}^N + \phi_y \hat{c}_t^N \right] + \varepsilon_{R,t}
\]

(3)

and

\[
\hat{R}_{D,t}^N = \hat{R}_{S,t} + \tilde{\nu}_1 \left[\hat{b}_{LP,t}^N - \hat{b}_{SP,t}^N \right]
\]

(4)

and further equations

Special case: In the absence of portfolio adjustment costs ($\tilde{\nu}_1 = 0$), model is isomorphic to New Keynesian 3-equation model:

→ Eggertsson/Woodford: QE is ineffective, while forward guidance is not
Symmetric monetary union

General case ($\tilde{\nu}_1 > 0$):

- **Unconstrained interest rate rule outcomes** can be replicated via QE-augmented policy rule
- **Caveat:** Initial shock is not too large (such that unconstrained deposit rates remain non-negative: $R_{D,t}^{N*} \geq 1$)
- **QE** remains effective until **yield curve becomes flat** (leading in the limit to zero deposit rates)

Intuition for Replicability:

- deposit rates drive dynamics in consumption Euler equation
- use appropriately scaled QE purchases to replicate **unconstrained deposit rates** and, hence, **unconstrained outcomes of all welfare relevant variables**
 → see: **Proposition 1**
Proposition 1: Consider the equilibrium allocation $A^{N*} = \{\hat{c}^{N*}_t, \hat{h}^{N*}_t, \hat{m}^{N*}_t\}_{t=0}^{\infty}$ of welfare relevant variables in a symmetric monetary union that results from an unconstrained interest rate rule consistent with $R_{D,t}^{N*} \geq 1$, leading to a welfare level W^{N*}. If the lower bound constraint on short-term interest rates makes it not feasible to implement this allocation with a conventional policy rule, then there exists a QE-augmented policy rule which respects the lower bound and replicates A^{N*} and, thus, W^{N*}.

Corollary 1: Features of the QE-augmented policy rule:
1. If $R_{S,t}^{*} \geq 1$, set $R_{S,t} = R_{S,t}^{*}$ and if $R_{S,t}^{*} < 1$, set $R_{S,t} = 1$
2. For $t < t_1$, set $q_t^{N} = 0$, while for $t \geq t_1$ set $q_t^{N} \geq 0$
Symmetric monetary union

Experiment 1: **MU with symmetric shocks and symmetric structures**

![Graphs showing economic variables](image)

- \(y^N \)
- \(\text{cpi}^N \)
- \(R_S \)
- \(R_D^N \)
- \(R_L^N \)
- \(q^N \)

Legend:
- **no ZLB**
- **ZLB no QE**
- **ZLB with QE**

Motivation

Model

Results

Conclusion
Symmetric monetary union

Comment 1: QE augmented policy rule preserves standard assignments of active MP and passive FP even if short-term rate reaches lower bound

Comment 2: For large shocks (s.t. $R_{D,t}^{N*} < 1$), QE becomes ineffective, but forward guidance remains effective (see appendix)
Asymmetric monetary union

- $N \neq S$ in terms of a) shocks or b) structures

- Additional features: Current account imbalances (funded by CB via TARGET-balances or privately by integrated financial markets; see appendix)

- QE: CB has two instruments (q_t^N, q_t^S) for asymmetric monetary union:
 → Proposition 1 can be extended to Proposition 2:
Proposition 2: Consider the equilibrium allocation of welfare relevant variables, consisting of the pair \(A^{N*} = \{ \hat{c}_t^{N*}, \hat{h}_t^{N*}, \hat{m}_t^{N*} \} \) \(\infty \) and \(A^{S*} = \{ \hat{c}_t^{S*}, \hat{h}_t^{S*}, \hat{m}_t^{S*} \} \) \(t=0 \), that results from an unconstrained interest rate rule consistent with \(R^{N*}_{D,t} \geq 1 \) and \(R^{S*}_{D,t} \geq 1 \), leading to welfare levels \(W^{N*} \) and \(W^{S*} \). If the lower bound constraint on short-term interest rates makes it not feasible to implement this allocation with a conventional policy rule, then there exists a QE-augmented policy rule which respects the lower bound and replicates \(A^{N*} \) and \(A^{S*} \) and, thus, \(W^{N*} \) and \(W^{S*} \).

Corollary 2: Features of the QE-augmented policy rule:
1. If \(R^{*}_{S,t} \geq 1 \), set \(R_{S,t} = R^{*}_{S,t} \) and if \(R^{*}_{S,t} < 1 \), set \(R_{S,t} = 1 \)
2. For \(t < t_1 \) set \(q^{N}_t = q^{S}_t = 0 \), while for \(t \geq t_1 \) set \(q^{N}_t \geq 0 \) and \(q^{S}_t \geq 0 \)
Asymmetric monetary union

Experiment 2: **MU with asymmetric shocks, but symmetric structures** (*here: homogeneous transmission channel*)

Shock realises only in N:

\rightarrow purchases with **symmetric** portfolios (*“capital key”*): $q^S = q^N$
Experiment 3: **MU with symmetric shocks, but asymmetric structures** (*here: heterogeneous transmission channel*)

Larger home bias in LT bonds in S ($\omega_S > \omega_N$):

\rightarrow purchases with **asymmetric** portfolios (≠ “capital key”): $q^S > q^N$
Asymmetric monetary union

How to read Experiment 2 vs. 3?

- Lower bound applies symmetrically if structures are symmetric → QE according to capital key
- Asymmetric structures create asymmetric private demand patterns for long-term bonds which do not fully realise due to the lower bound → Asymmetric QE needs to make up for the asymmetric patterns

Recall: no scope for opportunistic behaviour by assumption! → capital key becomes a natural margin for QE design under current circumstances

→ Paper is consistent with the ECB offering a range of distinct facilities, e.g.:
 QE: unconditional area-wide stimulus, guided by capital key, to lift inflation
 OMT: conditional support for structural reforms, country-specific
New Keynesian 3-equation model extended to a 2-country monetary union model with banks

Effectiveness of QE at the lower bound via portfolio adjustment costs?
 Idea: non-negativity of deposit rates replaces the non-negativity of short term policy rate

Sound fiscal governance structure:
 QE portfolio of CB can be adjusted to replicate unconstrained outcomes resulting from a standard Taylor-like interest rate rule

Key modelling challenge: incorporate strategic trade-offs arising from current fiscal incompleteness of EMU

1st best: make MP more effective via balanced reforms of EA architecture
Thank you for your attention!
BACKGROUND: Forward guidance

Experiment 4: **Approximating** unconstrained outcomes with QE and FG
BACKGROUND: Households (1)

The representative household in N obtains utility from overall consumption (c^N) and real money balances ($\frac{M^N}{P^N_c}$), and disutility from hours worked (h^N). The country-specific CPI is given by P^N_c.

The lifetime utility function is:

$$
\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \phi^N_t \left[\left(\frac{c^N_t - \zeta c^N_{t-1}}{1 - \sigma^{-1}} \right)^{1-\sigma^{-1}} - \left(\frac{h^N_t}{1 + \psi} \right)^{1+\psi} + \frac{\chi^{-1}_m}{1 - \sigma^{-1}_m} \left(\frac{M^N_t}{P^N_{c,t}} \right)^{1-\sigma^{-1}_m} \right]
$$

s.t. $D^N_t + M^N_t + P^N_{c,t}c^N_t = R^N_{D,t-1}D^N_{t-1} + M^N_{t-1} + W^N_th^N_t + \Gamma^N_t$

- Variables denoted in per-capita terms (sizes of N and S are α and $1-\alpha$).
- Nominal variables are deflated with the country-specific consumer price.
- Only N equations are shown. Those for S look symmetrical (with the exception that the terms of trade T_t take the opposite sign).
The optimality conditions in log-linear terms are:

\[(1 - \zeta \beta) \hat{MUC}_t^N = -\frac{1}{\sigma(1 - \zeta)} \left[\hat{c}_t^N - \zeta \hat{c}_{t-1}^N \right] + \frac{\zeta \beta}{\sigma(1 - \zeta)} \left[\hat{c}_{t+1}^N - \zeta \hat{c}_t^N \right] + \zeta \beta \hat{r}_{n,t+1}^N \]

\[\hat{MUC}_t^N = \hat{MUC}_{t+1}^N + \left[\hat{R}_{D,t}^N - \hat{r}_{c,t+1}^N - \hat{r}_{n,t}^N \right] \]

\[\psi \hat{h}_t^N = \hat{w}_t^N + \hat{MUC}_t^N \]

\[\hat{m}_t^N = -\sigma_m \hat{MUC}_t^N - \frac{\sigma_m \beta}{1 - \beta} \hat{R}_{D,t}^N \]

where the natural rate of interest is defined as \(\hat{r}_{n,t}^N \equiv -(\hat{\phi}_{t+1}^N - \hat{\phi}_t^N)\) and follows an exogenous AR(1) process:

\[\hat{r}_{n,t}^N = \rho r \hat{r}_{n,t-1}^N + \varepsilon_{n,t}^N \]

- \(\sigma > 0\) elasticity of intertemporal substitution
- \(\psi > 0\) wage elasticity of labor supply
- \(\sigma_m > 0\) interest elasticity of money demand
- \(\zeta \in [0, 1]\) habit formation in consumption
The consumption bundle c^N is assumed to be given by a CES function that consists of domestic c^N_D and foreign goods c^N_F:

$$c^N \equiv \left[\lambda^N \eta \left(c^N_D \right)^{\eta-1} + (1 - \lambda^N) \eta \left(c^N_F \right)^{\eta-1} \right]^{\frac{1}{\eta-1}}$$

- $\lambda^N \in [0, 1]$ share of domestic goods in the consumption basket consumed by the household (a natural index of openness)
- $\eta > 0$ elasticity of substitution between *Domestic* and *Foreign* goods.

Aggregate demand in N (log-linearised already):

$$\hat{y}^N_t = \lambda^N \hat{c}^N_t + (1 - \lambda^N) \hat{c}^S_t + \eta (1 - \lambda^N)(\lambda^N + \lambda^S) \hat{T}_t$$

- Consumer prices are: $\hat{\pi}^N_{c,t} = \lambda^N \hat{\pi}^N_{p,t} + (1 - \lambda^N) \hat{\pi}^S_{p,t}$
BACKGROUND: Firms

In each country, a continuum of monopolistically competitive firms sell their differentiated goods in the domestic and foreign market. Only labour enters the production function (in log-linear terms):

\[\hat{y}_t^N = \hat{h}_t^N \]

The NK Phillips curve features nominal price rigidity à la Rotemberg:

\[\hat{\pi}_{p,t}^N = \beta \hat{\pi}_{p,t+1}^N + \frac{\varepsilon - 1}{\chi} \left[\hat{\pi}_{t}^N + (1 - \lambda_H) \hat{T}_t \right] \]

with law of motion for the terms of trade \(T_t \equiv \frac{P_{S,p,t}}{P_{N,p,t}} \)

\[\hat{T}_t = \hat{T}_{t-1} + \hat{\pi}_{p,t}^S - \hat{\pi}_{p,t}^N \]
BACKGROUND: Banks

In each country, banks accept deposits and invest in short- and long-term bonds of both countries, facing portfolio adjustment costs and home bias for long-term bonds. Short-term bonds are perfect substitutes.

- The profit maximisation is given by:

\[
\max \mathbb{E}_t \left[R_{S,t} B_{SP,t}^N + R_{L,t+1} B_{LD,t}^N + R_{L,t+1} B_{LF,t}^N - R_{D,t} D_t^N \right. \\
\left. \quad - \frac{\nu_1}{2} \left(\delta \frac{B_{SP,t}^N}{B_{LP,t}^N} - 1 \right)^2 P_P^N,t - \frac{\nu_2}{2} \left(\frac{\omega_N}{1 - \omega_N} \frac{B_{LF,t}^N}{B_{LD,t}^N} - 1 \right)^2 P_P^N,t \right]
\]

s.t. \(D_t^N = B_{SP,t}^N + B_{LP,t}^N \)

\(B_{SP,t}^N = B_{SD,t}^N + B_{SF,t}^N \)

\(B_{LP,t}^N = B_{LD,t}^N + B_{LF,t}^N \)

The optimality conditions yield (in log-linear terms):

- **Deposit rate:** weighted average of short- and long-term rates

\[
\hat{R}_{D,t}^N = \frac{1}{1 + \delta} \hat{R}_{S,t} + \frac{\delta}{1 + \delta} \left[\omega_N \hat{R}_{L,t+1}^N + (1 - \omega_N) \hat{R}_{L,t+1}^S \right]
\]

- **Maturity** and **regional spreads:** similarly proportional to portfolio shares
Fiscal policy requires to finance debt payments (interest+principal) and lump-sum transfers to domestic households using debt and seigniorage.

- Long-term bonds are modelled as consols B_{consols}^N with value V^N with no maturity and one nominal unit as return each period.
- Nominal outstanding long-term debt: $B_{LGt}^N = V_t^N B_{\text{consols},t}^N$.
- The return is given by: $R_{L,t}^N = \frac{1+V_t^N}{V_{t-1}^N}$.

The government budget constraint is:

$$B_{SG,t}^N + B_{LG,t}^N + S_t^N = R_{S,t-1}^N B_{SG,t-1}^N + R_{L,t}^N B_{LG,t-1}^N + P_{c,t}^N \tau_t^N$$

The fiscal rules keep the real debt structure constant and determine lump-sum transfers as a stable feedback with $\theta > 0$ (log-linearised):

$$\hat{b}_{LGt}^N = \hat{b}_{SGt}^N$$

$$\frac{\delta}{\hat{b}_{LP}^N} \hat{\tau}_t^N = -\theta \left[\hat{R}_{S,t-1}^N - \hat{\tau}_{c,t}^N + \hat{b}_{SG,t-1}^N \right]$$

Short-term debt is the clearing residual in the government budget constraint.
BACKGROUND: Monetary policy

The central bank controls the short-term interest rate R_S via a Taylor-like rule which responds to the union-wide aggregates

$$\hat{R}_{S,t} = \rho_R \hat{R}_{S,t-1} + (1 - \rho_R)(\phi_\pi \hat{\pi}_t + \phi_y \hat{y}_t) + \varepsilon_{R,t}$$

with α being the size of North and $1 - \alpha$ the size of South:

$$\hat{\pi}_{c,t} = \alpha \hat{\pi}_{c,t}^N + (1 - \alpha) \hat{\pi}_{c,t}^S$$

$$\hat{y}_t = \alpha \hat{y}_t^N + (1 - \alpha) \hat{y}_t^S$$

Standard monetary policy is symmetric, yet unconventional bond purchases can potentially be asymmetric with some functional form:

$$\tilde{q}_t^N = f^N(\cdot) + \varepsilon_{q,t}^N$$

Seigniorage and income/losses from bond purchases can be distributed according to country size or back to the country of origin.
BACKGROUND: Seigniorage and market clearing

Central bank balance sheet with $M_t = \alpha M^N_t + (1 - \alpha) M^S_t$:

$$M_t = \alpha \left(B^N_{SC,t} + Q^N_t \right) + (1 - \alpha) \left(B^S_{SC,t} + Q^S_t \right)$$

Aggregate seigniorage in N is then determined by:

$$\alpha S^N_t = (1 - (1 - \alpha)\mu_1)(R^N_{S,t-1} - 1)\alpha B^N_{SC,t-1} + \alpha \mu_1 (R^N_{S,t-1} - 1)(1 - \alpha) B^S_{SC,t-1} + (1 - (1 - \alpha)\mu_2)(R^N_{L,t-1} - 1)\alpha Q^N_{t-1} + \alpha \mu_2 (R^S_{L,t-1} - 1)(1 - \alpha) Q^S_{t-1}$$

- $\mu_1 \in [0, 1]$ degree of income/loss sharing from regular seigniorage
- $\mu_2 \in [0, 1]$ degree of income/loss sharing from QE bond purchases

Market clearing on the bond markets implies in each country:

- Short-term bonds: $B^N_{SG,t} = B^N_{SD,t} + \frac{1-\alpha}{\alpha} B^S_{SF,t} + B^N_{SC,t}$
- Long-term bonds: $B^N_{LG,t} = B^N_{LD,t} + \frac{1-\alpha}{\alpha} B^S_{LF,t} + Q^N_t$
BACKGROUND: Current account

Current account $P_{p,t}^N \Omega_t^N = P_{c,t}^N c_t^N - P_{p,t}^N [y_t^N - \Xi_t^N]$ funded via five channels:

$$P_{p,t}^N \Omega_t^N = \frac{1 - \alpha}{\alpha} \left[M_t^S - M_{t-1}^S - (B_{SC}^S,t - B_{SC}^S,t-1) - (Q_t^S - Q_{t-1}^S) \right]$$

$$+ \mu_1 (1 - \alpha) (R_{S,t-1} - 1) \left[B_{SC}^S,t-1 - B_{SC}^S,t-1 \right]$$

$$+ \mu_2 (1 - \alpha) \left[(R_{L,t} - 1) Q_{t-1}^S - (R_{L,t} - 1) Q_{t-1}^N \right]$$

$$+ \frac{1 - \alpha}{\alpha} \left[B_{SF}^S,t - R_{S,t-1} B_{SF}^S,t-1 \right] - \left[B_{SF}^N,t - R_{S,t-1} B_{SF}^N,t-1 \right]$$

$$+ \frac{1 - \alpha}{\alpha} \left[B_{LF}^S,t - R_{L,t} B_{LF}^S,t-1 \right] - \left[B_{LF}^N,t - R_{L,t} B_{LF}^N,t-1 \right]$$

1. new money holdings in S exceed new money creation in S
2. If CB income shared across union:
 a) more regular seigniorage generated in S than in N
 b) more QE income generated in S than in N
3. If financial markets integrated:
 a) Banks in S buy more new short-term debt issued in N than vice versa
 b) Banks in S buy more new long-term debt issued in N than vice versa
BACKGROUND: Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.5</td>
<td>Relative country size of North</td>
</tr>
<tr>
<td>λ_N</td>
<td>0.8</td>
<td>Home bias of consumption in North</td>
</tr>
<tr>
<td>ω_N</td>
<td>0.7</td>
<td>Home bias of bonds in North</td>
</tr>
<tr>
<td>η</td>
<td>1.0</td>
<td>Substitutability of domestic and foreign goods</td>
</tr>
<tr>
<td>β</td>
<td>0.9925</td>
<td>Household discount factor</td>
</tr>
<tr>
<td>σ</td>
<td>6.0</td>
<td>Elasticity of inter-temporal substitution</td>
</tr>
<tr>
<td>ζ</td>
<td>0.7</td>
<td>Habit formation parameter in consumption</td>
</tr>
<tr>
<td>ψ</td>
<td>2.0</td>
<td>Frisch elasticity of labour supply</td>
</tr>
<tr>
<td>σ_m</td>
<td>1.0</td>
<td>Interest elasticity of money demand</td>
</tr>
<tr>
<td>ε</td>
<td>5.0</td>
<td>Elasticity of substitution across goods</td>
</tr>
<tr>
<td>χ</td>
<td>28.65</td>
<td>Price adjustment cost parameter</td>
</tr>
<tr>
<td>ν_1</td>
<td>0.0038</td>
<td>Short-long portfolio balance cost parameter</td>
</tr>
<tr>
<td>ν_2</td>
<td>0.0127</td>
<td>Domestic-foreign portfolio balance cost parameter</td>
</tr>
<tr>
<td>θ</td>
<td>0.5</td>
<td>Adjustment parameter in the fiscal transfer rule</td>
</tr>
<tr>
<td>μ_1</td>
<td>1.0</td>
<td>Degree of income sharing from seigniorage</td>
</tr>
<tr>
<td>μ_2</td>
<td>0.0</td>
<td>Degree of income sharing from bond purchases</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>1.5</td>
<td>Inflation coefficient in the interest rate rule</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>0.5</td>
<td>Output coefficient in the interest rate rule</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.5</td>
<td>Smoothing parameter in the interest rate rule</td>
</tr>
<tr>
<td>ρ_n</td>
<td>0.85</td>
<td>Smoothing parameter for the natural rate</td>
</tr>
<tr>
<td>\bar{T}</td>
<td>1.0</td>
<td>Steady state of the terms of trade</td>
</tr>
<tr>
<td>\bar{m}_b</td>
<td>0.2</td>
<td>Steady state ratio of money to short-term bonds</td>
</tr>
<tr>
<td>\bar{b}_N^{LP}</td>
<td>0.6</td>
<td>Steady state ratio of long-term bonds to output</td>
</tr>
<tr>
<td>δ</td>
<td>3.0</td>
<td>Steady state ratio of long- to short-term bonds</td>
</tr>
</tbody>
</table>