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B.1 Derivation of the ODE system (7) for consumption dynamics
between jumps

The Bellman equation and first-order condition are taken from (5) and (6) in the main part.
Keynes-Ramsey rules are obtained by first computing a differential equation for the evolution
of the shadow price of wealth and then re-employing the first-order condition again. For the
first step, we need a representation of our two-state Markov chain by a differential equation. It
reads

dz (t) = {w − z (t)} dqλ (t) + {b− z (t)} dqs (t) (B.1)

where qλ is a Poisson process with arrival rate λ and qs is a Poisson process with arrival rate
s. In state z (t) = w, a jump of qλ has no effect on z (t) , neither does qs affect z (t) in state
z (t) = b.

• Evolution of the shadow price

Using the budget constraint (2) and the evolution of labour income (B.1), the differential
of the shadow price of wealth reads (suppressing time arguments for simplicity)

dVa (a, z) = Vaa (a, z) {ra+ z − c} dt (B.2)

+ [Va (a, w)− Va (a, z)] dqλ + [Va (a, b)− Va (a, z)] dqs.

Differentiating the maximized Bellman equation with respect to wealth yields, using the enve-
lope theorem,

ρVa (a, z) = {rVa (a, z) + [ra+ z − c (a, z)]Vaa (a, z) (B.3)

+s [Va (a, b)− Va (a, z)] + λ [Va (a, w)− Va (a, z)]} .

Rearranging yields

(ρ− r)Va (a, z)− s [Va (a, b)− Va (a, z)]− λ [Va (a, w)− Va (a, z)]

= [ra+ z − c (a, z)]Vaa (a, z) .

Inserting into (B.2) gives

dVa (a, z) = {(ρ− r)Va (a, z)− s [Va (a, b)− Va (a, z)]− λ [Va (a, w)− Va (a, z)]} dt
+ [Va (a, w)− Va (a, b)] dqλ + [Va (a, b)− Va (a, w)] dqs.
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• Inserting first-order condition

When we now replace the shadow price by marginal utility from the first-order condition
(6), we get the Keynes-Ramsey rule for marginal utility,

du′ (c (a, z)) = {(ρ− r)u′ (c (a, z))− s [u′ (c (a, b))− u′ (c (a, z))]

−λ [u′ (c (a, w))− u′ (c (a, z))]} dt
+ [u′ (c (a, w))− u′ (c (a, z))] dqλ + [u′ (c (a, b))− u′ (c (a, z))] dqs. (B.4)

• Keynes-Ramsey rules for specific states

This equation is the Keynes-Ramsey rule for both states. To make it more informative, we
now derive one Keynes-Ramsey rule for each state. For an employed individual, the state and
labour income is given by z = w. For reasons that become clear in Section A.1 below, denote
wealth in the state by a = aw. The rule in (B.4) then reads

du′ (c (aw, w)) = {(ρ− r)u′ (c (aw, w))− s [u′ (c (aw, b))− u′ (c (aw, w))]} dt
+ [u′ (c (aw, b))− u′ (c (aw, w))] dqs.

Let f (.) be the inverse function for u′, i.e. f (u′) = c and compute the differential of f (u′ (c (aw, w))) .
This gives

df (u′ (c (aw, w))) = f ′ (u′ (c (aw, w))) {(ρ− r)u′ (c (aw, w))− s [u′ (c (aw, b))− u′ (c (aw, w))]} dt
+ [f (u′ (c (aw, b)))− f (u′ (c (aw, w)))] dqs.

As f (u′) = c and therefore f ′ (u′ (c (aw, w))) = df(u′(c(aw,w)))
du′(c(aw,w))

= dc(aw,w)
du′(c(aw,w))

= 1
u′′(c(aw,w))

, we get

dc (aw, w) =
1

u′′ (c (aw, w))
{(ρ− r)u′ (c (aw, w))− s [u′ (c (aw, b))− u′ (c (aw, w))]} dt

+ [c (aw, b)− c (aw, w)] dqs ⇔
u′′ (c (aw, w))

u′ (c (aw, w))
dc (aw, w) =

{
ρ− r − s

[
u′ (c (aw, b))

u′ (c (aw, w))
− 1

]}
dt

+
u′′ (c (aw, w))

u′ (c (aw, w))
[c (aw, b)− c (aw, w)] dqs.

Multiplying by −1 yields

−u
′′ (c (aw, w))

u′ (c (aw, w))
dc (aw, w) =

{
r − ρ+ s

[
u′ (c (aw, b))

u′ (c (aw, w))
− 1

]}
dt

− u′′ (c (aw, w))

u′ (c (aw, w))
[c (aw, b)− c (aw, w)] dqs. (B.5)

Using the instantaneous CRRA utility function (1), we get u′′(c(aw,w))
u′(c(aw,w))

= −σc(aw,w)−σ−1

c(aw,w)−σ
=

−σ
c(aw,w)

and therefore

σ
dc (aw, w)

c (aw, w)
=

{
r − ρ+ s

[(
c (aw, w)

c (aw, b)

)σ
− 1

]}
dt+ σ

[
c (aw, b)

c (aw, w)
− 1

]
dqs.

After dividing by σ, we get (A.1a) in the next section. The derivation of (A.1c) also starts from
(B.4) and steps are in perfect analogy.
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