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Many countries consider the lifting of restrictions of social contacts (RSC). We
quantify the effects of RSC for Germany. We initially employ a purely statistical
approach to predicting prevalence of Covid-19 if RSC had been upheld after April
20. We employ these findings and feed them into our theoretical model. We find
that the peak of the number of sick individuals would have been reached already
end of April. The number of sick individuals would have fallen below 1,000 at the
beginning of July. If restrictions had been lifted completely on April 20, the number
of sick should have risen quickly again from around April 27. A balance between
economic and individual costs of RSC and public health objectives consists in lifting
RSC for activities that have high economic benefits but low health costs. In the
absence of large-scale representative testing of CoV-2 infections, these activities can
most easily be identified if federal states of Germany adopted exit strategies that
differ across states.
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1 Introduction

Authorities in most countries have imposed restrictions on social contacts (RSC in what follows)
in various forms. They include contact restrictions outside the household, shut down of schools,
the closing of businesses, quarantines and in some cases curfews. Many countries are facing the
question of how long RSC should last.
We study the situation in Germany (and briefly provide a comparison to other countries

further below). Apart from some exceptions (like e.g. cancelling the travel and tourism fair ITB
on 28 February 2020), no systematic public health measures were implemented before March 14.

1Jean Roch Donsimoni, Klaus Wälde (corresponding author) and Constantin Weiser are at the Johannes
Gutenberg Universität Mainz, Gutenberg School of Management and Economics, Jakob-Welder-Weg 4, D-55131
Mainz, Telefon + 49.6131.39-20143, jdonsimo@uni-mainz.de, waelde@uni-mainz.de, constantin.weiser@uni-
mainz.de. René Glawion is at the Department of Economics of Hamburg University, rene.glawion@uni-
hamburg.de. Bodo Plachter is at the Institute for Virology of the University Medical Center Mainz, Mainz,
Germany, plachter@uni-mainz.de. The first version of this paper became available on 8 April 2020 as Donsimoni
et al. (2020). This is an updated version using data up to 6 May for reasons explained in the text. We are
grateful to Claudius Gros, Albrecht Ritschl, Hilmar Schneider, Hans-Werner Sinn, to many members of the
“Makrorunde”and to seminar participants of the ’Forecasting COVID19’workshop at the Johannes Gutenberg
University for comments and discussions.
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After a meeting between the government and the heads of federal states on Friday, 13 March
2020, various coordinated measures to mitigate the spread of Covid-19 were implemented.
Measures included the closing of schools and shops, suspending of sports events, the duty to
wear masks, contact restrictions or even contact bans (see Kleyer et al., 2020, for a detailed
overview). As of 20 April, some of these measures were relaxed showing relatively heterogeneous
exit strategies accross federal states.2 We quantify both the effects of the RSC in place before
20 April and their effects in the long run in case they had been maintained. We also quantify
the effect of a complete lift of RSC20.3

We find that neither permanent RSC nor a complete lift is desirable. Permanent RSC20
would yield an epidemic in Germany that would lead to around 167, 000 sick individuals only.
The epidemic would not be over, however, as most individuals would still likely be susceptible
to an infection. Permanent RSC would also not be economically sustainable. A complete
lift is likely to yield a fast increase of the number of sick that would overstrain the public
health system. This points towards the need to think about exit options which promise to keep
infection rates stable. Exit strategies should be reversible and tested for, say, 4 weeks and differ
across regions. This would allow authorities to understand their health and economic effects.
Learning about policy measures appears essential in this global pandemic.
We believe our analysis is useful both for as long as the Covid-19 epidemic is ongoing and for

the time thereafter. Modelling, calibrating and forecasting the dynamics of epidemics is crucial
for understanding a possible second or third wave and the effects of public health measures.
Understanding basic relationships today informs future policy decisions. Once the epidemic is
over, the general interest will probably fall. Nevertheless there will be a long wave of analyses
on how the epidemic can be understood in detail and how the income-health trade-off has been
addressed. Our analysis is a starting point which is already beeing used for more elaborate
analyses.
There is an exploding literature on Covid-19 characterized by a reproduction factor much

larger than one. As even a minimal discussion would take up too much space in this introduc-
tion, we summarise the literature relevant for our work in an extra section further below.
The structure of the paper is as follows. We first take a purely statistical perspective and

describe the dynamics of the number of reported infected individuals over time. We employ
both data from the Robert Koch Institute (RKI, 2020) and from Johns Hopkins University
(JHU, 2020). We also provide a forecast of the number of reported sick individuals purely
based on RKI observations and under the assumption that RSC rules in place until 19 April
had not changed. Section 2 also briefly surveys the related literature. This allows us to work
out the contribution of our paper in more detail and provides a reference for future work.
Section 3 presents the essentials of the model, the appendix provides a complete overview. Our
calibration is in section 4 and section 5 quantifies the effects of the RSC in place before 20 April
and studies the effects of a complete exit. Section 6 concludes.

2 Data and literature

2.1 A first look at data for Germany

• Descriptive statistics
There are two datasets for Germany that are used to describe prevalence of Covid-19. The

first is data from the Robert Koch Institute (RKI, 2020), the second data source is from Johns
2While definite answers need to await future research, the general perception goes that exit strategies were

much more heterogeneous than strategies for restricting social contacts.
3Restrictions of social contacts in some general sense are abbreviated by RSC. When we refer to restrictions

of social contacts in effect before 20 April 2020, we abbreviate them by RSC20.
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Hopkins University (JHU, 2020). In this section we employ both to see their relative strengths
and merits.
When we look at figure 1, one might believe to identify a permanent break in growth rates

end of March. Looking at the right picture gives the impression that the curve becomes flatter
over time but there is a kink on 30 March: When looking at growth rates (crosses in left part
of the figure), there is a permanent drop on this same 30 March.
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Figure 1 The daily growth rates (left) and the level of the number of sick (right) for RKI data
(logarithmic scale)

When we look at Johns Hopkins data in figure 2, we can identify two break points. The
first is on 20 March. It can clearly be seen in the left part of the figure with the drop in
daily growth rates and in the right part on 20 march. This is the drop that was also identified
econometrically by Hartl et al. (2020). It is also clear from these two figures that there is
another break on 27 March. Looking at the sequence of public health measures in Germany
(see table 1) and the usual delay between infection and symptoms and reporting (see Linton et
al., 2020 and Lauer et al., 2020 for medical evidence on incubation time with median 5.2 days
for Covid-19 with Chinese data), one could try to identify the events behind these breaks.
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Figure 2 The daily growth rates (left) and the level of the number of sick (right) for JHU data
(logarithmic scale)

3



In our analysis of the effect of public health measures below, we will focus on RKI data.4

Hence, we assume that the break took place on 30 March.5

• Government responses to Covid-19

While we focus on Germany in our analysis, other countries also imposed social distancing
rules. The following table provides a brief cross-country overview of government responses to
Covid-19.6 The underlying data comes from the University of Oxford (2020), similar overviews
are available at www.acaps.org.7

Major public Schools Domestic Mortality rate
events closed movements (date of first measure

suspended banned and per 10 million)∗

Germany March 20 March 16 March 22 2
France February 29 March 16 March 17 0.3
Italy March 5 March 5 March 10 24.5
Spain March 10 March 16 March 16 7.5
United Kingdom March 17 March 23 March 24 8.3

Table 1 Timeline of contact ban measures introduced in major European economies (University
of Oxford, 2020)
*Data taken from Johns Hopkins University (2020)

When we look at the dates when governments became active, the timing of events differs.
There are also strong differences with respect to the number of deaths before the governments
became active for the first time. Yet, the table shows that countries qualitatively follow similar
strategies. Our findings are therefore informative also beyond Germany.

• Gompertz curves

The best, almost entirely observation-based, forecast for the evolution of Covid-19 in Ger-
many, under the assumption thatRSC 20 do not change, can be obtained from fitting a Gompertz-
curve model to the data. The Gompertz curve is a reduced form, non-linear trend model which
is characterized by an upper saturation point which is estimated endogenously. The model
displays a double exponential form with three parameters and a time index t,

yt = ae−be
−ct
.

The parameter b is a horizontal shift parameter and c is the growth parameter. It can be
thought of as the infection rate in this context. The parameter a denotes the saturation point:
Letting time t become larger and larger (we look further and further into the future) shows
that yt approaches a as e−ct with c > 0 approaches zero. It is well-known that models of this
type capture the s-shape of infection numbers quite well.

4Attention is restricted to the period up to 3 April. Our choice of the dataset would not change if we had
used a longer time period. Our Gompertz curve analysis employs data up to 6 May.

5We have undertaken analyses with JHU data as well where we assumed that the effects of public health
measures are visible as of 20 March. While there are obviously (small) quantitative differences, the broad picture
remains the same.

6We are grateful to the editor for this suggestion.
7For a much more detailed overview of public health measures in Germany, see Kleyer et al. (2020).
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Figure 3 Predicting the number of reported infections under the regime in place before 20 April

We employ data (dots) up to 19 April for estimation and data (squares) until 6 May for
a first test of the effects of relaxing RSC as of 20 April. Figure 3 summarises the estimated
model (employing ordinary least squares and an additive error term). The dark dots are RKI
observations and the red dashed curve is the prediction of the model. The green shaded area
delineates the 95% confidence region for the forecast. With new data, the green area becomes
smaller and approaches the dashed red curve.
As this figure impressively shows, RSC as valid until 20 April made Germany head towards a

stable number of reported Covid-19 infections. This number lies at around 167, 000 individuals
and would be reached around early June if RSC20 had not been changed. As the observations
not employed for estimation show, relaxing RSC20 as of 20 April had a negative (though weak)
health effect: Observations after 19 April tend to lie above the dashed red prediction and
outside the confidence interval.

2.2 Covid-19 research

Given our interest on Covid-19 dynamics in Germany, we first briefly summarize general Covid-
19 research applied to Germany. We then relate our work to projections of Covid-19 in Germany.

2.2.1 General questions

Despite Covid-19 having only emerged a few months ago, there are already several hundred
research projects studying its effects in economics. A (non-exhaustive) repository is maintained
by the European Economic Association.8 In this short time, many papers have addressed the
implications of Covid-19 for the EU, and for Germany in particular. Chen et al. (2020) study
the effects of the virus on economic activity proxied by electricity usage and mobility data
from Google in Europe and the US. They find that the drop in economic activity is negatively
correlated with Covid-19-related deaths per capita, with Germany experiencing a year-on-year
decline of over 10% in electricity usage and a drop of over 30% in visits to public places between
pre- and post-Covid-19 periods. They posit that the reaction is driven by mitigation policies,
which are proportional in their severity to the number of Covid-19-related fatalities. McKibbin
and Fernando (2020) also study the economic impact of Covid-19, focusing on macroeconomic

8The EEA only lists existing projects studying the effects of Covid-19, which does not constitute a publication
but merely a database. The list can be found at https://www.eeassoc.org/index.php?site=JEEA&page=
298&trsz=299.
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variables. They find that, under various scenarios ranging from less severe to most severe,
aggregate labour supply and consumption drop substantially globally, while equity premiums
and costs of production both rise in response to the health shock. They find that for Germany,
this implies up to 350,000 deaths and a 8.7% drop in GDP in 2020 under the worst case scenario.
Finally, we also note the contribution of Chen and Qiu (2020), who assess the effectiveness of
non-pharmaceutical interventions (NPIs) on the spread of the disease in a sample of countries.
They forecast that Germany would experience a peak in active cases in the first half of April
before seeing a sharp decline through to August. In particular, they find that choosing between
stricter and more relaxed NPI combinations has little effect, so long as the core policies of mask
wearing, school closing, and centralised quarantining remain in place.

2.2.2 Projections

A first survey is in Donsimoni et al. (2020a), a broader overview is in Gros et al. (2020).
We build our analysis on the model and projection presented in Donsimoni et al. (2020a).9

In contrast to this paper, we (i) provide a more precise calibration of the effect of no public
health measures. The precision results from the availability of more observations. This is
essential for quantifying the effects of lifting RSC. We (ii) can also quantify the effects of RSC
in the present paper as suffi cient data has become available since our earlier work. Our most
recent observation employed for estimation now is from 19 April. Most importantly, due to
the availability of enough observations, we can (iii) employ purely statistical methods to make
a forecast for the RSC in place until April 19. This allows us to work without assumptions
about long-run infection and sickness rates. For judging the effect of a lift of RSC20, we do
need to return to long-run assumptions, however, as we need to work with the theoretical model
developed in Donsimoni et al. (2020a) again.
Adamik et al. (2020) also quantitatively analyse the situation in Germany. They employ

a microsimulation model which allows to better understand the effect of heterogeneity across
households. They argue that reaching herd immunity without violating the capacity limit of
the health care system is likely to fail. They do not explicitly analyse the effects of RSC and do
not discuss the fit of their model to observed data. Dehning et al. (2020) estimate parameters
of their model in a statistically very convincing way. They focus on constant transition rates for
different RSC-regimes (but do allow for time-dependency to smooth between regimes). They
make forecasts for a period of two to three weeks and use data up to 31 March.10

The letter by Rothe et al. (2020) points to the importance of asymptomatic carriers when
assessing the diffusion of CoV-2. They specifically isolate several cases where patients did not
present symptoms for an extended period of time allowing them to further contaminate others.
The relevance of asymptomatic carriers is echoed by Fuhrmann and Barbarossa (2020), who
argue that ignoring them could have dire consequences in terms of lives lost.
Stübinger and Schneider (2020) analyse the progression of the virus exploiting a “lead-

lag structure” among various countries around the world. They employ a purely empirical
approach which makes a comparison of their findings more diffi cult. Khrapov and Loginova
(2020) in their SIR-based analysis support the idea that the situation in Germany is unlikely to
become unstable, as they forecast a peak number of active cases of 80,000 and a peak number
of fatalities below 10,000. In contrast to our work, they do not explicitly take changes in public
health measures into account. Hidden or asymptomatic infections are also ignored.
There are many further, so far unpublished analyses that also address various dimensions

of projections and virus spread. Barbarossa et al. (2020a, 2020b) analyse the impact of control

9See Donsimoni et al. (2020b) for a summary in German.
10These three papers were presented at the ’Forecasting COVID19’workshop at the Johannes Gutenberg

University on 6 April 2020.
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measures and their effectiveness in slowing down the spread of Covid-19 in Germany. German
et al. (2020) study exit strategies from lockdown, paying particular attention to the role of
antibody testing. Khailaie et al. (2020a) quantity he reproduction rate Rt and also evaluate the
implications for policy.11 These analyses are very interesting as they are based on considerably
generalized SIR models taking e.g. hidden infections and hospitalization into account. One
distinction of our approach to all SIR-type models we are aware of is the modelling of the
infection rate. This rate is usually a linear function of the infectious in the model. In our
setup, we generalize the infection rate in (2) below and make it a function of the number of
healthy, infected and recovered. This reflects the idea behind matching models in economics
and makes calibration of parameters much more flexible and therefore leads to a better data
fit. Zhang et al. (2020) consider the effects of the size of the population that can be infected
on the evolution of the pandemic.

3 The model

The model is described fully in the appendix. In the main text, we present only those parts
that are important for understanding our calibration below and our forecasts.

3.1 The basic structure

The basic structure of the model is illustrated in figure 4. The most well-known background
in economics are search and matching models in the tradition of Diamond (1982), Mortensen
(1982) and Pissarides (1985). The background in mathematics are continuous time Markov
chains. We employ this structure and assume four states.

Figure 4 Transitions between the state of health (initial state), sickness, death and health
despite infection or after recovery

We employ this figure to offer precise definitions about which individuals we consider to be
in which state. State 1 is the state of being healthy in the sense of never having been infected
by CoV-2. State 2 captures all individuals that have been reported to be infected with CoV-2.
As these reports are based in Germany up to now on tests of individuals that have some (e.g.
respiratory) symptoms, we call this the group of sick individuals. The sum of all individuals

11Khailaie et al (2020b) maintain a model of infection forecasting that they update regularly. This report
offers an up-to-date view of Rt for Germany and for each federal state. The data can be found at https:
//gitlab.com/simm/covid19/secir/-/wikis/Report.
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that are ever reported to be sick is the data collected and published by RKI and JHU that
we will employ below. The term sick is also useful as it stresses the differences to individuals
that are infected but do not display symptoms. This process is captured in the model by the
flows from state 1 to state 4. The size of these flows is a big unknown empirically speaking
and several tests are currently being undertaken to measure the number of infected but not
sick individuals.12 State 3 counts the number of deceased individuals. All individuals that
have recovered from being sick or that were never reported or never displayed symptoms after
infection are in state 4.
We will employ the terms prevalence and incidence distinctly throughout the paper. Inci-

dence is the number of individuals that are reported for the first time to be sick on a given day.
This is the inflow into state 2. Prevalence is identical to N2 (t) which denotes the (expected)
number of sick individuals at a point in time t in state 2. Prevalence at t is the sum over all
incidences from the beginning of the epidemic up to t minus the deceased and the recovered
individuals.
Data reported by RKI or JHU has traditionally consisted of the number of individuals that

were ever reported to be sick, i.e. the sum (integral in terms of the model) of all the inflows
into state 2. This quantity at t amounts to prevalence plus the deceased plus the recovered.13

The incidence is the daily difference between data reported by RKI or JHU on one day minus
the value reported on the day before. This corresponds to incidence above, i.e. Nnew

2 (t) in (12).
The population in our model is characterized by an infection rate which is simply the ratio

of the number of infected individuals (sick and in state 2 or without symptoms in state 4) to
individuals that are alive. Letting Ns (t) denote the number of individuals in state s at t, the
infection rate is simply

ρ (t) =
N2 (t) +N4 (t)

N1 (t) +N2 (t) +N4 (t)
. (1)

The infection rate is zero initially at t < 0. On 24 February 2020 and for Germany, a number
of N2 (0) = 16 sick individuals is introduced into the system and infections and sickness start
occurring.
The central transition rate in our model is the individual sickness rate that captures flows

from state 1 to state 2. We specify it as

λ12 (t) = aN1 (t)−α (N2 (t) + ηN4 (t))β [ρ̄− ρ (t)]γ , (2)

where 0 < α, β, γ < 1 allows for some non-linearity in the process. The contact rate with which
individuals meet other individuals is a > 0. The first term N1 (t)−α captures the idea that more
healthy individuals reduce the individual sickness rate. The second term (N2 (t) + ηN4 (t))β in-
creases the sickness rate when there are more infectious individuals. The parameter η describes
the fact that individuals that are infected but do not display symptoms (and are therefore
in state 4 of our model) nevertheless can infect other individuals. The third term in squared
brackets makes sure that the arrival rate is zero when a share ρ̄ of society is sick (state 2) or
healthy after infection (state 4).
The sickness rate satisfies “no sickness without infected individuals”, λ12 (a,N1, 0, 0, ρ) = 0

and “end of spread at suffi ciently high level”, λ12 (a,N1, N2, ηN4, ρ̄) = 0. In between these start-
and endpoints, the infection rate will first rise and then fall. This specification makes sure that
in the long run a share of around 1 − ρ̄ will not have left state 1, i.e. will never have been

12See (8) in the appendix on how we quantify this flow and the corresponding transition rate. The crucial
assumption concerns the share of infected individuals that do not display symptoms or are not reported. We
assume this share is around 80% to 90%. In terms of model parameters, this means we assume r = 10% (see
below).
13We denote this by N ever

2 (t) in Donsimoni et al. (2020).
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infected.14 We refer to ρ̄ as the long-run share of infected individuals once the epidemic is over.
In our calibration procedure below we consider the contact rate a and elasticities α, β, γ to

be a function of public health measures. We would especially expect that RSC lead to a drop
in the contact rate a.

3.2 The model as an ordinary differential equation system

After some steps (see Donsimoni et al., 2020a), our model can be summarized by an ordinary
differential equation system. The (expected) number of individuals in state s is described by
system (3). Parameters not described above are r, λ23, nrec and N . The probability to become
sick after an infection with CoV-2 is denoted by r. The death rate for the transition of sick
individuals from state 2 to state 3 visible in figure 4 is denoted by λ23.We assume that it takes
(on average) nrec days to recover from being sick, i.e. to move from state 2 to state 4. Finally,
the population size (before the epidemic) is given by N.

Ṅ1 (t) = −a
r
N1 (t)1−α (N2 (t) + ηN4 (t))β Nβ−α

[
ρ̄− N2 (t) +N4 (t)

N1 (t) +N2 (t) +N4 (t)

]γ
, (3a)

Ṅ2 (t) = aN1 (t)1−α (N2 (t) + ηN4 (t))β Nβ−α
[
ρ̄− N2 (t) +N4 (t)

N1 (t) +N2 (t) +N4 (t)

]γ
−
(
λ23 + n−1rec

)
N2(t), (3b)

Ṅ3 (t) = λ23N2(t), (3c)

N4 (t) = N −N1 (t)−N2 (t)−N3 (t) . (3d)

We employ this system for calibration and for prediction. Initial conditions for our solution
are N ever

2 (0) = N ever
observed (0) = 16 for 24 February 2020 (RKI, 2020), N3 (0) = N4 (0) = 0 and

N1 (0) = 83, 100, 000 − N ever
2 (0), where N = 83.1 million is the population size in Germany

before the epidemic. Initial conditions for our calibration of the RSC20 regime are numbers
Ns (tr) where tr=30 March 2020 is the day when the RSC20 regime starts. Initial conditions
for predicting the effect of a potential lift of RSC20 correspond to model predictions for tl=27
April 2020.15

4 Calibration and model fit

4.1 Calibration

The parameters in our model are either chosen exogenously or are the outcome of our data
fitting procedure. Exogenous parameters are displayed in table 2.

average recovery
in days
nrec

share of
reported infections

r

share of infectious
recovered individuals

η

14 0.1 0.4

Table 2 Exogenously chosen parameters
14We employ “around”as some individuals will have ended up in state 3 whose number does not enter the

expression in (1).
15As discussed below, we assume that a lift on 20 April would imply observable effects only around one week

later.
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As in our earlier work, we assume that recovery takes an average of 14 days. This implies
a recovery rate of λ24 = 1/14 which captures heterogeneity in the course of the disease (Guan
et al., 2020) to some extent. The share r of individuals that becomes sick (and is reported)
after an infection is 10%. The share η of infected individuals without symptoms that can infect
other individuals is 40%.16

The model makes a clear prediction about the long-run number of individuals that were
ever reported to be sick. This number is given by

N ever
2 (end) ≡ lim

t→∞
N ever
2 (t) = rρ̄N. (4)

We would like to emphasize that this property of our model is crucial for our long-run predictions
and the short-run findings. The long-run number of individuals that, once the epidemic is over,
were ever reported to be sick is the probability to get sick after an infection, r = 10%, times
the long-run share of infected individuals, ρ̄ = 60%, times population size, N = 83.1 million,
i.e. the long-run number of sick individuals equals 4.99 ≈ 5 million. This is the number of sick
individuals in the “normal”scenario of Donsimoni et al. (2020a,b). In their “optimistic Hubei
scenario”, they assume that the population share of ever infected individuals once the epidemic
is over amounts to ρ̄ = 6% only. In this scenario, the long-run number of sick individuals is
10%×6%×83.1 million =498.6 thousand individuals, i.e. roughly 0.5 million individuals. Once
this quantity is fixed, any public health measure in our model only shifts the number of sick
individuals over the duration of the epidemic. RSC reduces the sickness rate λ12 from (2) in
the short-run but only delays the infection of the rest of N ever

2 (end) from (4). We admit that
this is a strong implication of our model but we only “translate”assumptions made in more
general not model-based discussions.17

Given that this is a strong assumption and given our Gompertz curve estimation of the
situation in Germany until April 19 illustrated in figure 3, we are now in the lucky situation
that we can do without a strong assumption for N ever

2 (end) for RSC before April 20. For
this regime (but not for the end of the entire Covid-19 epidemic), figure 3 tells us that we are
converging in May or June to a value of roughly 167, 000 sick individuals. To make clear that this
value is valid only for the RSC in place before April 20, we denote it by N ever

2 (June) ≈ 167, 000.
This estimate implies a parameter restriction on our long-run value.18 Put differently, we can
compute

rρ̄ ≈ N ever
2 (June)

N
=

2.1

1000
. (5)

This is the share of sick individuals in the population when the epidemic is over and if the
RSC20 were preserved forever. The value for the long-run share ρ̄ of infected individuals is
therefore computed such that (5) is satisfied.19

We finally fix various parameters such that we match data reported by RKI. To do so,
we minimize the Euclidean distance between the reported data and the predicted values of
the model. We undertake two separate calibrations, one for each sub-period described above
after the discussion of figure 1. We target a weighted sum of the squared difference between
N ever
2 (t) =

∫ t
0
λ12 (s)N1 (s) ds and observation and the newly-sickNnew

2 (t) =
∫ t
t−1 λ12 (s)N1 (s) ds

16Robustness analyses were undertaken in Donsimoni et al. (2020a).
17In ongoing work we study the historical evidence about rρ̄ from other epidemics and pandemics. No

systematic evidence seems to be available at this point. We are grateful to dozens of epidemiologists, virologists,
economists and decision-makers for discussions of this point.
18We are grateful to Hilmar Schneider for having raised this point.
19We emphasize again that preserving the RSC would be unlikely to set an end to the epidemic as some

infected individuals will remain within the population also by June. A lift of RSC only in June would then lead
to a next rise of infections.
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and observation. More precisely, parameters a, α, β and γ are obtained from

mina,α,β,γ
t2∑
t=t1

(
N ever
2 (t)−N ever

2,observed (t)
)2

+
(
Nnew
2 (t)−Nnew

2,observed (t)
)2
. (6)

We impose constraints for α, β, γ to lie between zero and one and for a to be positive. None
of the constraints are binding. Table 3 presents these and all other parameter values both for
(t1, t2) = (24 Feb to 29 March) and (t1, t2) = (30 March to 7 April) .
We want to match the number of reported deaths from Covid-19 for our two sub-periods.

Hence, the constant death rate for the period from t1 to t2 can be computed from

λ23 (t1, t2) =
N obs
3 (t2)∫ t2

t1
p2 (s) dsN

, (7)

where N obs
3 (T ) is the number of dead individuals at T. Employing this equation yields the

values in table 3.

4.2 Parameters and model fit

The calibration in Donsimoni et al. (2020a) employed RKI data from 24 February 2020 to
T = 21 March 2020. Given the impression from figure 1, there is a break in the growth rate of
the number of sick only on 30 March (and not on 20 March). We therefore identify two regimes
in the RKI data, one from t1 =24 February to t2 =29 March and one starting t1 =30 March.
The calibration results for both regimes are in table 3. The figure also displays ρ̄ for the

pre-RSC20 regime up to 29 March. We set it equal to 6% and therefore choose the “optimistic
Hubei scenario”. The value for ρ̄ for the RSC20 regime as of 30 March is the value from (5)
divided by r from table 2. The death rate λ23 is such that the model matches the number of
deceased individuals according to (7).

death contact infection elasticities long-run
rate rate infection

rate
λ23 a α β γ ρ̄

24 Feb to 29 March 1/500 3.024/106 0.5751 0.8662 0.6459 0.06
30 March to 19 April 1/500 1.9657/107 0.2782 0.8983 0.7764 0.0207

Table 3 Calibrated parameters for RKI data before and after the break

The fit of the calibration can be judged by looking at figure 5.
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Figure 5 Fit for RKI data, incidences on left and total incidences on right

Our minimization procedure in (6) takes both incidences and total incidences into account
without weighting observations explicitly. As a consequence, the fit is unlikely to be equally
good. The red curve in the left part of figure 5 shows that incidences up to 29 March are
well explained by our model. By contrast, as visible when looking at the yellow curve, daily
incidences in the RSC20 regime are harder to capture. We clearly see, however, that the
calibrated model employing data up to 19 April already captures the turning point in the
number of incidences. This is also what the purely statistical Gompertz approach shown in
figure 3 has identified.
The fit for total incidences on the right is very good. The red curve fits data up to 29 March

very well and shows where the number reported by RKI would have gone if no RSC had been
imposed. The yellow curve is calibrated with data up to 19 April. From the prediction of the
model we are around the turning point now in Germany.
The figure also tests our model prediction by plotting observations as of 20 April which

were not taken into account in the calibration procedure. We see that the model predicts the
effects after 19 April almost as well as before. This seems to contradict the finding from the
Gompertz curve estimation in figure 3. The analysis there argues that relaxing RSC20 led to
a (small) increase in incidence. The purely statistical approach assumes one data-generating
process up to 19 April. Our calibration of the theoretical model allows for a break in the spread
of Covid-19 on 30 March. Hence, the fit is adjusted to the period of RSC and therefore should
match the observations as of 20 April better. We see this as a confirmation that the easing of
RSC on 20 April did not have a significant effect on infections.

5 The effects of RSC and of relaxing them

• The effects of RSC

We now quantify the health effects of restrictions of social contacts (RSC). Our central
variable of interest is again the prevalence of Covid-19, the number of individuals that are
simultaneously sick —N2 (t) in terms of our model. This section also shows what the effects of
keeping social distancing forever and relaxing it as of 20 April are.
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Figure 6 The epidemic without restrictions of social contacts (RSC, red curve), the effect of
permanent RSC (yellow) and the effect of a temporary RSC (green) as measured by prevalence
N2 (t)
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The red curve shows the evolution of the epidemic in the absence of any public intervention.
This curve employs parameters as calibrated above and as reported in table 2 and the first row
of table 3. As the yellow curve in figure 6 shows, social distancing measures and the shutdown
were useful and considerably “flattened the curve”. This curve is plotted using parameter values
again from table 2 and from the second row of table 3.
From a pure health perspective this is of course very desirable. As an example, we can

again look at the corresponding probabilities to become sick on a given day or over the period
of one week. As the red curve in the left part of figure 5 illustrates, in a situation without RSC,
the number of incidences would have continued to increase and so would have the risk to get
infected. The yellow curve shows that incidences are now falling and so does the risk to get
infected.
While this was expected and predicted by many, our quantitative model can make predic-

tions about the long-run effects of these distancing measures. If measures were upheld perma-
nently, the peak of Covid-19-prevalence N2 (t) would be reached end of April already. We can
define the end of an epidemic such that prevalenceN2 (t) falls below 1,000 or the daily incidences
are below 100. Prevalence would be lower than 1,000 beginning of July and incidences would
be below 100 beginning of May. We stress again that these are expected dates that should hold
if RSC20 are upheld permanently. We also stress that this would not mean a complete end of
the epidemic in the sense of herd immunity. There would still be many individuals in state 1
that are not immune and that can be infected and become sick.

• A complete exit from RSC

Let us return to figure 6 and inquire about the effects of lifting social distancing rules as
of 20 April. Due to the delay between infection and reporting also discussed in the context of
figures 1 and 2, we assume that the effects of a lift are visible as of 27 April. We therefore plot
a green curve in figure 6 that starts on 27 April.
Plotting this curve requires again parameters for our ODE system in (3). We assume that

Covid-19 would continue to spread according to the sickness rate λ12 from (2). The question
is which parameter values we should choose. We do employ parameters in table 2 as always.
As it is a projection under a different regime, we cannot employ parameter values from the
days before. Hence, concerning parameters from table 3, we assume that the sickness rate is
characterized by the same parameter values as before RSC20. This leads us to employing the
parameter values which we obtained for our calibration of the period from 24 February to 29
March in the first row of table 3.
We should stress that this does not imply that the spread is with the same speed as of

24 February. The number of individuals in states 1, 2 and 4, which are the arguments in the
sickness rate (2), differ on 27 April as compared to those before any RSC. As a consequence,
the speed of the spread will differ.
Plotting the projection for 27 April onwards also requires a value for ρ̄. This share of the

population that will have been infected once the epidemic is over is the most diffi cult parameter
to pin down. If we keep the value of ρ̄ = 0.06, RSC would just imply a shifting of the number of
sick over the length of the epidemic. It would, however, not reduce the overall number of sick.
It seems natural to assume, however, that RSC not only affect current infection rates but also
the long-run share of individuals that are ever infected. We therefore assume a lower value for
the long-run infection rate of ρ̄ = 0.04.20 As is clear from this discussion, a complete lifting of
social distancing rules under RSC20 should lead to an increase in the number of sick individuals
again.

20We emphasize that this is the outcome of many comments and discussions about the effects of shutdowns
on long-run infection rates. It is generally argued that more social separation does not only reduce the infection
rate instantaneously but also in the long run.
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Figure 6 therefore summarizes the trade-off decision makers faced. Preserving RSC20 would
be good from a public health perspective but would imply further very high economic costs.
A complete lift on 20 April would have run the risk of returning to fast growth of the number
of sick individuals. The conclusion discusses options that could strike a balance between both
scenarios.

6 Conclusion

Neither perpetuating the situation with restrictions on social contacts in place before 20 April
(RSC20) nor a complete lift of RSC20 is desirable. Preserving RSC20 would imply social and
economic costs that cannot be sustained for long. Lifting RSC20 completely would yield high
health risks with a quick increase in the number of sick individuals.
A way out must consist in measures that reduce economic costs without increasing infection

risks substantially (see Abele-Brehm et al., 2020, for suggestions). At the same time one
should not follow a one-rule-fits-all policy for all regions in Germany. If different regions (or
even smaller communities) run different policies and data is well-recorded for smaller areas as
well, decision makers could quickly learn about which measures are most effective in terms of
reducing infection rates as well as reducing economic and social costs. As an example, some
regions could allow for schools to open again as of grade 9, others only as of grade 5. Other
regions could allow restaurants (preserving a distance of 2 meters between tables) to open,
while others do not. A trial period of four weeks with partially relaxed rules in some parts of
Germany should be enough to identify the effects. One should then be prepared to adjust the
measures (both upwards or downwards depending on the outcomes) in around four weeks after
relaxing the measures.21

These measures would not be required if truly large-scale testing of the population and
isolation of infected and sick was possible.22 In the absence of medical testing, one can only
learn by coordination of heterogeneous regional responses to Covid-19. This would be a good
example of how a federal system can be used to learn from each other. If this option is ignored,
it will be just as diffi cult in one month’s time to judge which measures help economically and
are not too costly from a health perspective.
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7 Appendix

This appendix briefly summarizes the model of Donsimoni et al. (2020a). The model builds on
a continuous time Markov chain with 4 states as illustrated in figure 4.23 In addition to the
infection rate ρ (t) = N2(t)+N4(t)

N1(t)+N2(t)+N4(t)
from (1) and the sickness rate λ12 (t) =

aN1 (t)−α (N2 (t) + ηN4 (t))β [ρ̄− ρ (t)]γ from (2), we allow for a flow φ14 (a,N1 (t) , N2 (t) , ηN4 (t))
of individuals that are infected but do not display any symptoms. This captures hidden in-
fections. The corresponding individual rate is denoted by λ14. As data on λ14 is basically
non-existent, we assume that a constant share r of infected individuals display symptoms.
Hence, the transition rate λ14 is related to λ12 via r [λ14N1 + λ12N1] = λ12N1: The outflow of
newly infected in squared brackets times the share r of individuals that show symptoms after
infection gives the flow into sickness on the right-hand side. We therefore obtain the transition
rate from state 1 to state 4 as

r [λ14 + λ12] = λ12 ⇔ λ14 =
1− r
r

λ12. (8)

Individual mortality and recovery rates are constants. When we assume average recovery of
nrec days, we obtain

λ24 = n−1rec. (9)

The number N3 (t) of deaths from Corona by t is determined by the constant death rate λ23
applied to those that are currently sick,

N3 (t) =

∫ t

0

λ23p2 (s)Nds. (10)

We employ this equation to quantify λ23.
The number of individuals that have been reported sick since the onset of the epidemic,

which is also the time series that is typically reported by authorities is denoted by N ever
2 (t) in

our model. It follows from

Ṅ ever
2 (t) = λ12 (t)N1(t) = λ12 (t) p1(t)N. (11)

When data provides incidences on a given day t, we need to compare this with the inflow
between yesterday t− 1 and t into state 2. Hence, our theoretical counterpart to incidences is

Nnew
2 (t) =

∫ t

t−1
λ12 (s) p1 (s)Nds. (12)

Employing these equations allows to formulate our differential equation system in (3).

23For a very accessible introduction to the underlying Poisson processes and their arrival rates see e.g. Wälde
(2012, part IV).
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