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Abstract:Wemodel the evolution of the number of individuals reported sick with
COVID-19 in Germany. Our theoretical framework builds on a continuous time
Markov chainwith four states: healthywithout infection, sick, healthy after recov-
ery or despite infection but without symptoms, and deceased. Our quantitative
solution matches the number of sick individuals up to the most recent observa-
tion and ends with a share of sick individuals following from infection rates and
sickness probabilities. We employ this framework to study inter alia the expected
peak of the number of sick individuals in Germany in a scenario without public
regulation of social contacts. We also study the effects of public regulations. For
all scenarios we report the expected end date of the CoV-2 epidemic.
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1 Introduction
There is no need to stress the importance of the Coronavirus disease (COVID-19)
for public health, economic consequences, and the well-being of individuals. Yet,
there is a need for more knowledge about objective information and reliable pre-
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dictions of how the pandemic will likely evolve in the months to come. How large
is the risk of any individual to become sick on a particular day or within a week?
How does this risk change over time? How large is the expected number of indi-
viduals ever infected, and how large is the number of individuals infected at any
point in time (prevalence)? The latter question is the main concern of the public,
politicians and health practitioners to ensure sufficient provisions of health ser-
vices. Finally, what are the effects of policy interventions that are already in place
and that are being discussed?

This paper starts by describingwhat we know quantitatively about the spread
of the Corona epidemic in the Chinese province of Hubei and in South Korea. This
offers insights from two episodes of epidemics that seem to be coming to an end
and that help in making predictions for other countries. We then compare the
time-series evidence from Hubei and South Korea with cross-sectional informa-
tion in European countries.

Section 3 develops an epidemiological Markov model. We start from individ-
uals that can be in four states: healthy (the initial state, state 1), infected and sick
(state 2), infected and recovered or infected andnever havingdisplayed symptoms
(state 3), and deceased (state 4). Individuals move between these states with en-
dogenous transition rates that depend on population characteristics. This model
allows us to make predictions, inter alia, about all the quantities of interest that
appeared in the initial questions.

We apply this model to Germany. We choose parameter values such that the
time series of the number of sick (and reported) individuals in Germany since 24
February is matched by our model. Our data source is the Robert Koch Institute
(RKI, 2020). In order to predict the future evolution, we build on various evidence
from epidemiology such as individual sickness probability and long-run infec-
tion rates of the whole population. We emphasize the scarce medical and statisti-
cal knowledge on these parameters. Any predictions therefore must be subject to
large variations. We accordingly undertake robustness checks with respect to our
central parameters.

Given our calibration for the epidemicwithout public intervention,wepredict
prevalence, i. e. the number of sick individuals at each point in time. We compute
when the peakwill be reached andwhethermedical services are in sufficient sup-
ply. We also undertake counterfactual analysis to understand when drastic pol-
icy measures (e. g. shutting down educational institutions or canceling big public
events) are most effective.

Wehave four general findings: First, current epidemiological thinking implies
that the long-run effects of the epidemic only depend on the aggregate long-run
infection rate and the individual risk to become sick after an infection. Any mea-
sures by individuals and the public therefore only influence the dynamics of the
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spread of SARS-CoV-2 (severe acute respiratory syndrome due to corona virus 2).1

Second, predictions about the duration and level of the epidemic must strongly
distinguish between the officially reported numbers (Robert Koch Institut, RKI)
and actual numbers of sick individuals. Third, given the current (scarce) medi-
cal knowledge about long-run infection rates and individual risks to fall sick for
CoV-2, any prediction on the length (duration inmonths) and strength (e. g. maxi-
mum numbers of sick individuals on a given day) of the outbreak is subject to un-
certainty. Our predictions therefore offer robustness analyses that provide ranges
on how long the epidemic will last and how strong it will be. Fourth, comparing
one public intervention to another public intervention shows that an intervention
can lead to either more or less severe outcomes of the epidemic. If an intervention
takes place too early, peak prevalence can actually be higher than with an inter-
vention that starts later. Depending on the outcomemeasure, an intervention can
also be worse than no intervention. Interventions should therefore be contingent
on current infection rates in regions or countries.

Concerning predictions about COVID-19 in Germany, we find that the long-
run number of sick individuals (that are reported to the RKI), once the epidemic
is over, will lie between 500,000 and 5 million individuals. While this seems to be
an absurdly large range for a precise projection, this reflects the uncertainty about
the long-run infection rate in Germany. If we assume that Germany will follow
the good scenario of Hubei (and our projections are even a bit more conservative
given discussions about data quality), Germany will end up with 500,000 sick
individuals over the entire epidemic. If by contrast we believe (as many argue)
that once the epidemic is over, 70% of the population will have been infected
(and thereby immune), Germany will end up with 5 million cases.

Defining the end date of the epidemic as the first day with less than 100 inci-
dences, i. e. newly reported sick individuals per day, we find a large variation of
outcomes depending on the effectiveness of governmental pleas and regulations
to reduce social contacts. An epidemic that is not influenced by public health
measures would end in mid-June 2020. With public health measures lasting for
few weeks, the end is delayed by around one to two months. The delay is advan-
tageous because it reduces the peak number of individuals that are simultane-
ously sick. When we believe in long-run infection rates of 70%, peak prevalence
is equally high for all scenarios we went through and well above 1 million. When
we can hope for the Hubei-scenario, the maximum number of sick individuals
will “only” be around 200,000. Whatever value of the range of long-run infection
rates we want to assume, the epidemic will last at least until June, with extensive

1 For a comparison between COVID-19 and SARS from 2003, see Wilder-Smith et al. (2020).
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and potentially future public health measures, it will last until July. In the longest
case, it will last until end of August.2

There is an exploding literature on these issues, especially inmedical science.
The classic large-scale spatial model is described in Balcan et al. (2010). It is ap-
plied in Chinazzi et al. (2020) to study the effect of a travel ban on China and the
world. Akbarpour and Jackson (2018) study a general model of infection, but can-
not provide applications to the current epidemic. The widely discussed study by
Ferguson et al. (2020) focuses on the US and the UK.3 An insightful study on the
usefulness of isolation strategies for COVID-19 based on a stochastic transition
model similar to ours is by Hellewell et al. (2020). Wilder-Smith et al. (2020) dis-
cuss the similarities and differences between the SARS 2003 (severe acute respira-
tory syndrome) epidemic andCOVID-19.Onebig issue is the largenumber of “quiet
infections” in COVID-19 as opposed to SARS 2003, an aspect wewill capture in our
model below.

The analyses which come closest to ours are two notes by the Deutsche
Gesellschaft für Epidemiologie (DGfE, 2020) and by an der Heiden and Buchholz
(2020). DGfE (2020) offer predictions based on a model similar to ours (so called
SEIR models, see e. g. Anderson et al., 1992). We present our model in detail, in-
cluding the stochastic foundation, and discuss the implications of the modelling
assumptions.4 Modelling assumptions turn out to be crucial for evaluating public
policy measures. We also implement in detail the effects of policy measures and
discuss the trade-offs with respect to length and strength of the evolution of the
epidemic. The match of the model with the data also differs. While DGfE (2020)
seem to use summary statistics for their calibration, we determine the parameters
of ourmodel by fitting ourmodel predictions to the data. This offers the advantage
that we can update our predictions whenever new data is available.

The study by an der Heiden and Buchholz (2020) is, to the best of our knowl-
edge, the most elaborate study at this point for Germany. We share their belief
that mathematical models help in studying the effects of policy measures. Many
parameters of their analysis are derived from knowledge on the epidemic in China

2 We emphasize that all projections are subject to uncertainty and permanent monitoring of ob-
served incidences are taken into account to update the projection. The most recent projections
are available at https://www.macro.economics.uni-mainz.de/corona-blog/
3 An essay by Simon (2020) argues that the death rate in Germany is much smaller than in other
countries. This makes it difficult to apply the Ferguson et al. (2020) findings to Germany.
4 There are also various internet pages that offer projections for parameter models that can
be chosen by the user. Examples include https://gabgoh.github.io/COVID/index.html, https:
//neherlab.org/covid19/ or http://covidsim.eu/. These pages usually do not show the details of
the model and a comparison to our approach is therefore difficult.

https://www.macro.economics.uni-mainz.de/corona-blog/
https://gabgoh.github.io/COVID/index.html
https://neherlab.org/covid19/
https://neherlab.org/covid19/
http://covidsim.eu/
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and especially the city Shenzen.We calibratemanyof our central parameters such
that the model fits the observations in Germany. We also share with them the ap-
proachof using SEIRmodels. Our paper emphasises the implications of the funda-
mental model assumptions for the prediction. We find below that the evaluation
of policymeasures crucially depends on thesemodel assumptions.Wemake these
model assumptions explicit in our paper and discuss the effects of variations in
these assumptions.

Why should economists work on an epidemic? The economic costs of
COVID-19 are huge and seem to be larger than those of the financial crisis starting
in 2007.5 This paper provides a model that allows us to understand the spread of
the disease. We employ a model in the tradition of search and matching models
originating from Diamond (1982), Mortensen (1982) and Pissarides (1985). The
basic structure of these models (continuous time Markov chains) is identical to
epidemiological models (which is clear from overviews such as Hethcote, 2000).6

Compared to standard search and matching models, we allow for four states,
however. We extend the typical matching framework from a technical perspec-
tive by taking the stochastic nature of transitions and their prediction for the
probability to be in various states into account. These probabilities are described
by forward Kolmogorov equations. As we work with a discrete number of states,
we obtain an ordinary differential equation system.7 The conclusion discusses
various next steps that should be undertaken to understand economic conse-
quences of COVID-19 better. We believe that our framework can form the basis for
an understanding of the economic costs of the pandemic.8

5 Eichenbaum et al. (2020) study the effects of the CoV-2 epidemic on economic decisions of
households. They emphasize the household decisions to reduce labour supply exacerbate the
recessionary effects of the epidemic. They apply their model to the US. Barro et al. (2020) employ
mortalities and economic consequences of the “Spanish Flu” to provide estimates of the world
wide consequences of COVID-19. They do not offer a detailed projection for Germany. The costs
for Germany are estimated by Dorn et al. (2020). Atkeson (2020) provides estimates of economic
consequences of COVID-19 for the US.
6 An application of the SIR model, the benchmark model of epidemiology, to the COVID-19 pan-
demic including economic implications is undertaken by Toda (2020).
7 When working with continuous states like e. g. wealth or labour income, partial differential
equations result. See e. g. Bayer and Wälde (2010), Achdou et al. (2020), Kaplan et al. (2018) or
Khieu and Wälde (2020).
8 A framework that analyses the trade-off between public health considerations and economic
costs was developed by Gros et al. (2020). Given the current uncertainty about the length of the
epidemic, all estimates of economic costs for Germany are also subject to large variability. Ob-
servations about e. g. employment effects of COVID-19 are still lacking. In work in progress we
develop an extended framework that allows to incorporate both labour market and health ef-
fects.
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2 Data

This section describes what we know quantitatively about the spread of reported
infections.We startwithHubei and its capitalWuhan inChina.Weafterwards look
at South Korea and very briefly at Japan. We focus on the evolution of the num-
ber of individuals that were ever reported to be sick during the current epidemic.
This number, by construction, can only rise. We chose Hubei and South Korea as
the epidemics reportedly come to an end in these countries. Given the huge uncer-
tainty about long-run infection rates and individual risk to display symptoms after
an infection with CoV-2, we consider the long-run ratios of individuals reported
sick to the overall population. This benchmark allows us to judge the credibil-
ity of our predictions for Germany. We are aware that we compare very different
countries with very different cultural and political habits and medical systems.
For reference, we also look at a cross section of infections for European countries.
See the appendix for a description of data sources.9

Hubei
Since the onset of the outbreak in theHubei province in China, the number of con-
firmed cases has risen dramatically, peaking at 67,801 (WHO Situation Reports,
2020).10 Reporting began in January 2020 and we note that in mid-February, the
WHO changed its classification methodology by reporting both clinically and lab
confirmed cases rather than only lab confirmed cases. In terms of cumulative
numbers, the total reported cases of infected individuals has risen continuously
since January, since there has been continuous influx of new cases and very little
communication about individuals transitioning back to being healthy.

When reporting began, the rise of new cases seemed to follow an exponen-
tial curve, with the number of new cases constantly increasing, however in early
February, this trend stopped. Indeed, another trend then took over following a
more S-shaped pattern, i. e. that of a sigmoidal function. The total number of re-
ported cases over time is shown in Figure 1, which shows a clear explosive trend
at the start of the outbreak before slowing down and approaching what appears
to be an asymptote around 70,000.

Tomake this comparable to other countries, we take the population of around
59.17 million individuals in Hubei into account. This implies an infection rate of

9 Note that all figures below are as of 21March 2020 and come from the JohnsHopkins University
dataset from Dong et al. (2020).
10 There are attempts to correct supposedly under-reported numbers from China by employing
South Korea as a benchmark country (Lachmann, 2020).
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Figure 1: Total cases in Hubei seem to converge to a constant.

about 0.11% or 1 person in 873 being infected in the long-run. While this is only
one province, it does provide us with a reference point for what to expect in other
regions of the world.

South Korea and Japan
Soon after China, South Korea, Japan, and many other countries all started see-
ing a rise in their number of confirmed cases. However, these countries have had
very different experiences when it comes to infection outbreaks. Indeed, while
South Korea has seen the number of confirmed cases rise to 9,241, Japan only has
1,307 confirmed cases (or 14% that of SouthKorea). The question remainswhether
these countries are also experiencing a convergence to a stable number of (cumu-
lative) confirmed cases. Figure 2 shows the cumulative number of confirmed cases
in South Korea (left) and Japan (right).

The data from South Korea shows a reduction in the slope of the curve for to-
tal confirmed cases, indicating a significant drop in the number of new infections
reported. Assuming the tendency continues, this would point toward South Korea
progressively converging to a constant, similarly to the Hubei province in China.
Japan on the other hand (as well as all other countries at this point) does not ap-
pear to slow down significantly. Relating South Korean infections to population
size, we get a long-run infection rate of 1 in 5,337, with a peak number of confirmed
cases of ca. 9,606.

Europe
In Europe, however, the situation continues to deteriorate, with new cases being
reported by authorities on a daily basis numbering in the thousands (WHO Situa-
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Figure 2: Total cases in South Korea exhibit a similar pattern to the Hubei province.

Table 1: Current infection rates and risks in a sample of European countries.

Country Population Confirmed cases Infection rate (%) Risk per 1 inhabitant
(1) (2) = (2)/(1) = (1)/(2)

Sweden 10,151,866 2,526 0.025% 4,050
Netherlands 17,424,978 6,440 0.037% 2,684
France (metro) 64,906,000 25,600 0.039% 2,535
Belgium 11,455,519 4,937 0.043% 2,320
Germany 83,100,00 37,323 0.045% 2,227
Norway 5,515,736 3,100 0.058% 1,719
Spain 46,937,060 49,515 0.105% 948
Italy 60,359,546 74,386 0.123% 811
Switzerland 8,570,146 10,897 0.128% 784
Sample total 308,143,212 214,724 0.070% 1,435

tion Reports, 2020). However, bearing in mind the lessons learned from the case
of the Hubei province, and to a lesser extent from the case of South Korea, this
current period of explosive growth should, in theory, be followed by a slow taper-
ing leading to a plateauing of the total number of cases. We report in Table 1 the
current infection rates in some European countries. The sample below represents
58% of the total EU population, including Norway and Switzerland. This sample
is by no means intended to be representative and is for illustrative purposes only
by considering some of the most affected economies.

As we can see from Table 1, the degree of infection per country varies from 1
in 4,050 to 1 in 784, a fivefold ratio. Other countries fare better, the UK for example
has a risk of 1 in 6,914, however we can clearly see that these figures are not yet
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as low as those in Hubei, with the exception of Italy and Switzerland, which are
now below the 1 in 873 rate observed in the Chinese province, and Spain, which is
approaching it fast. If this case is to be repeated, then thingswill likely worsen be-
fore they improve. However, with measures taken by governments, and progress
being made on the medical front for an effective vaccine, there is still room for
governments to curb these rates despite the rapid rise in cases.

3 The model

3.1 The structure

The model builds on a continuous time Markov chain with 4 states. We look at
health of an individual i that can be in four states S = {1, 2, 3, 4}. Healthy without
infection (s = 1), sick (s = 2), dead (s = 3), healthy with or after infection (s = 4).
State 1 is the initial state for all individuals, thus si(0) = 1 for all i = 1...N where N
is initial population size.11 There are individual transition rates λrs (with r ∈ S and
s ∈ S) between these states as illustrated in Figure 3.

3.2 Transition rates

Starting with the transition from being healthy to sick, each individual in state
1 has a certain average number of social contacts per day. We capture this by an
exogenous arrival or contact rate a. Once a contact takes place, there is a certain
probability that the contact is with an individual that can infect the healthy in-
dividual. If we assumed random contacts with healthy and sick individuals, this
probability would be (N2(t)+ ηN4(t))/(N1(t)+N2(t)+N4(t)), where Ns(t) is the (ex-
pected) number of individuals in state s at t. This probability assumes that allN2(t)
individuals that are sick can infect healthy individuals and a constant and exoge-
nous share η of healthy individuals in state 4 can also infect healthy individuals
from state 1. This parameter η captures the idea of “quiet infections” as empha-
sized e. g. byWilder-Smith et al. (2020). As opposed to SARS 2003 (or the common
flu), individuals infected with CoV-2 do not necessarily display symptoms but can
nevertheless infect others. There is also first evidence (Xing et al., 2020) that even
recovered individuals (i. e. those that came from state 2) can carry CoV-2, also sup-
porting our use of a positive η.

11 In our quantitative solution below, the initial state follows from the number of reported sick
individuals on 24 February 2020.
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Figure 3: Transitions between the state of health (initial state), sickness, death and health de-
spite infection or after recovery.

Inpractice, individuals donot encounter sick individualswith this probability
being equal to the share of sick individuals in society as sick individualsmight stay
at home or behave differently (not shaking hands or similar) than non-sick indi-
viduals.We do assume, however, that the probability π(t) to encounter a sick indi-
vidual rises in N2(t) and ηN4(t) and falls in N1(t), i. e. π(t) = π(N2(t), ηN4(t),N1(t))
with àπ/àN2 > 0, àπ/à(ηN4) > 0 and àπ/àN1 < 0.12 These contacts can lead to
infections. Hence, we have an individual sickness rate of λ12(t) ≡ aπ(t). Finally,
when there are N1(t) healthy individuals, the aggregate flow from state 1 to state 2
is ϕ12(t) ≡ aπ(t)N1(t).13

A further property an infection rate should reflect is the fact emphasized by
many virologists and epidemiologists that once an epidemic is over, around two
thirds of the entire population will be infected. This includes individuals that had
symptoms at some point and asymptomatic cases. We capture this fact by intro-
ducing the infection rate which is simply the ratio of the number of infected indi-
viduals (sick and in state 2 or without symptoms in state 4) to individuals that are
alive,

ρ(t) =
N2(t) + N4(t)

N1(t) + N2(t) + N4(t)
. (1)

The infection rate is zero initially at t < 0. Illustrated for Germany in a way that
is somewhat too simple but perfectly fine for our projection, ρ = 0 on 23 February
2020 (and before) when the number of reported sick individuals was zero. On 24

12 Individuals that have died no longer play a role in social interactions. Hence, N3(t) does not
appear as argument in the sickness rate.
13 Aparallel can be drawn betweenϕ and amatching function, and λ12 and the job finding prob-
ability in search and matching frameworks in the tradition of Diamond (1982), Mortensen (1982)
and Pissarides (1985).
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February 2020, a number of N2(0) = 16 is introduced into the system, and infec-
tions and sickness start occurring. The sickness rate λ12(t) is zero also in the long-
run when this infection rate equals the long-run infection rate, which we denote
by ρ̄. This captures the above mentioned fact that some individuals will never be
infected during the epidemic and will always remain in state 1, lim t→∞N1(t) > 0.

Summarizing our discussion, an example for the individual sickness rate that
captures insights from epidemiology and virology would be

λ12(t) ≡ λ12 (a,N1(t),N2(t), ηN4(t), ρ(t))

= aN1(t)
−α (N2(t) + ηN4(t))

β [ρ̄ − ρ(t)]γ , (2)

where 0 < α, β, γ < 1 allows for some non-linearity in the process and a > 0. The
first term N1(t)−α captures the idea that more healthy individuals reduce the indi-
vidual sickness rate. The second term (N2(t)+ ηN4(t))β increases the sickness rate
when there are more infectious individuals. The third term in squared brackets
makes sure that the arrival rate is zero when a share ρ of society is sick (state 2)
or healthy after infection (state 4). The sickness rate satisfies “no sickness with-
out infected individuals”, λ12(a,N1,0,0, ρ) = 0 and “end of spread at sufficiently
high level”, λ12(a,N1,N2, ηN4, ρ̄) = 0. In between these start- and endpoints, the
infection rate will first rise and then fall. This specification makes sure that in the
long run a share of around 1− ρ̄will not have left state 1, i. e. will never have been
infected.14

As is widely documented and reported (see e. g. Nishiura et al., 2020), there is
also a flow of individuals that are infected but do not display any symptoms. We
denote this flow by ϕ14(a,N1(t),N2(t), ηN4(t)) and the corresponding individual
rate by λ14. The arguments can be rationalized in the same way as the flows into
sickness.

Is it possible to obtain data for λ14? One would need a cohort of inhabitants
of a region (and not just those that contact medical services to get tested) to un-
derstand the share of individuals that are infected but do not display symptoms.
Good data is not available (let alone time series) and might never be available,
given the currently still large costs per individual tests (between 80 Euro and 120
Euro). We therefore assume that a constant share r of infected individuals display
symptoms. This is a quantity many epidemiologists also work with. Hence, the
transition rate λ14 is related to λ12 in the following sense,

r [λ14N1 + λ12N1] = λ12N1. (3)

14 We employ “around” as some individuals will have ended up in state 3 whose number does
not enter the expression in (1).
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In words, the outflow of newly infected, λ14N1 + λ12N1 in squared brackets on the
left-hand side, times the share r of individuals that show symptoms after infection
gives the flow into sickness, λ12N1. We can therefore compute the transition rate
from the state of being healthy (s = 1) to the state of healthy again or no symptoms
(s = 4) as

r [λ14 + λ12] = λ12 ⇔ λ14 =
1 − r
r

λ12. (4)

Finally, there is an individual mortality rate and a recovery rate. Both rates
depend onmany individual characteristics. At the aggregate level, they rise in the
stock of sick individuals. We specify them as ϕ23(N2(t)) and ϕ24(N2(t))with corre-
sponding rates λ23 and λ24, respectively.15 For our analysis below, we will assume
that both rates are constants. Concerning recovery, we are aware that it strongly
varies across age (e. g. Guan et al., 2020) and that recovery is not a state that is
identical for each individual. As we abstract from ex-ante heterogeneity, we as-
sume a recovery rate that is identical across individuals and that it takes on av-
erage nrec days until recovery. Given the exponential distribution of duration in
each state, this means that 1/λ24 = nrec or

λ24 = n
−1
rec. (5)

Death is an absorbing state. We also consider the final healthy state to be absorb-
ing, i. e. we abstract from relapses.16

3.3 Probabilities and means

The evolution of probabilities, shares and expected numbers
We can express the transition across health states of an individual by a stochastic
differential equation similar to the transition across states of employment (see
e. g. appendix B.1 to Bayer et al., 2019 or Khieu and Wälde, 2020). We can also
directly write down ordinary differential equations for an individual to be in a
certain state s at t. Let us denote this probability byps(t) = Prob(si(t) = s|si(0) = 1),

15 One could plausibly argue and find support in micro studies that the death and recovery rate
also depend on the number of healthy individuals (that are required to take care of sick individ-
uals). These considerations are not crucial for our macro analysis and are therefore neglected.
16 Some individuals sick with COVID-19 are hospitalized. An extension of the model could in-
clude a hospital state with inflows from state 2. Outflows from the hospital state are then into
state 3 and state 4. Flows from state 2 to state 4 should be kept in such an extension as not all
COVID-19 patients are hospitalized.
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i. e. as the probability to be in state s at t conditional on having started in state 1 at
t = 0. The ODEs have the following general form (see Ross, 1993 for background),

ṗ1(t) = −λ12p1(t) − λ13p1(t) − λ14p1(t) + λ21p2(t) + λ31p3(t) + λ41p4(t),
ṗ2(t) = −λ21p2(t) − λ23p2(t) − λ24p2(t) + λ12p1(t) + λ32p3(t) + λ42p4(t), (6)
ṗ3(t) = −λ31p3(t) − λ32p3(t) − λ34p3(t) + λ13p1(t) + λ23p2(t) + λ43p4(t),

and are completed by the identity p4(t) = 1 − p1(t) − p2(t) − p3(t). For brevity,
individual transition rates are represented by λrs. We stress that these equations
hold for arrival rates that can take any functional form with arguments N1, N2, N3
and N4.

As death is an absorbing state, λ3i = 0 for all i. Given the assumption that
infected means being immune to further infection and that the mortality rate is
negligible in symptom-free states, we also set λ21 = λ41 = λ13 = λ43 = 0. Our final
structure for the evolution of individual probabilities therefore reads

ṗ1(t) = − (λ12 + λ14) p1(t), (7a)
ṗ2(t) = − (λ23 + λ24) p2(t) + λ12p1(t), (7b)
ṗ3(t) = λ23p2(t). (7c)

A standard lawof large numbers tells us that individual probabilities also give
shares in the population. Hence, when we solve this system, we can think of the
time paths of ps(t) also as the shares of society in the different states. When we
compute the expected number of individuals in state s at t, denoted by Ns(t), we
would also obtain an identical ODE system where the probabilities are replaced
by the expected numbers.17 As the interest of our analysis lies in the (expected)
number of individuals in certain states (are there sufficiently many beds in hos-
pital for severe cases?), we will also refer to the variable ps(t) as the (expected)
number Ns(t) of individuals.

The probability to get sick per day
For our quantitative predictions it will be useful to present the probability for an
individual to get sick over a period of one day or one week. So far, we only talked

17 Let us denote the expected number of individuals in state s at t by Ns(t) = E0Ñs(t) where
Ñs(t) is the stochastic process for the number of individuals in state s at t. As the expected share
of individuals in state s equals the probability to be in this state, Ns(t)/N = ps(t), we can write
Ns(t) = ps(t)N for the expected number of individuals in this state. Replacing the probabilities
ps(t) by Ns(t)would yield an ODE system in Ns(t). Our system employed for predictions below in
(15) is expressed in this way.
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about rates λrs.We denote the probability to get sick over a period of one day, start-
ing in t, by pgsday(t). This probability is one minus the probability to stay healthy.
The probability to stay healthy is, given the exponential distribution of duration
in a state, a simple exponential function of the transition rate.We therefore obtain

pgsday(t) = 1 − e
−∫

t+1
t λ12(s)ds, pgsweek(t) = 1 − e

−∫
t+7
t λ12(s)ds. (8)

The second probability pgsweek(t) is the probability to get sick between today in t
and the next 7 days to come.Wewill plot them below to provide ameasure of how
risky social interactions are during the evolution of the epidemic.

3.4 The number of individuals who become sick, ever were
sick, and die

Because recovery is a process with additional measurement problems, a more re-
liable data source for our calibration purposes is the number of individuals that
have been reported sick since the onset of the epidemic. This is also the time se-
ries that is typically reported by countries and regions (such as those reported by
the RKI in Germany or theWHOmore generally). In ourmodel, the corresponding
number follows from the inflows from state 1 to 2 and is given by

Ṅever
2 (t) = λ12 (t)N1(t) = λ12(t)p1(t)N . (9)

When we are interested in the number of individuals that are newly reported
sick at some point in time t (incidences at t in short), we should not employ N2(t).
The change of the latter, described in (7b), is determined by the newly reported
(inflow)minus the outflow, i. e. those that recovered (and thosewho died). Hence,
when data provides incidences on a given day t, we need to compare this with
the inflow between yesterday t − 1 and t. Hence, our theoretical counterpart to
incidences is

Nnew
2 (t) =

t

∫
t−1

λ12 (s) p1 (s)Nds. (10)

Finally, the number N3(t) of deaths from Corona by t is determined by the
constant death rate λ23 applied to those that are currently sick,

N3(t) =
t

∫
0

λ23p2 (s)Nds. (11)
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3.5 Model properties

Before we calibrate our model, we briefly discuss its theoretical predictions. This
illustrates the plausibility of our assumptions and also the flexibility of themodel.
Our model consists of the ODE system (7) where we replace the probabilities ps(t)
by the expected number Ns(t) as described in footnote 17. The sickness rate λ12 is
from (2), the other arrival rates λ14 and λ24 are from (4) and (5), respectively. The
death rate λ23 is a constant. We start the solution of our model with Never

2 (0) =
Never
observed(0). We set N3(0) = N4(0) = 0 and N1(0) = N − Never

2 (0).
One can easily understand the plausible structure of our ODE system (7). The

number N1(t) of healthy individuals in state 1 (i. e. the probability or share p1(t))
can only fall. Individuals either become sick with rate λ12 or get infected without
symptoms with rate λ14. Both transitions imply an outflow from state 1. The same
is true, mutatis mutandis, for state 3 and 4: For state 3, there are only inflows from
state 2 implying that N3(t) increases over time. State 4 only experiences inflows
from state 1 and 2 implying that N4(t) increases over time. The number N2(t) of
sick individuals can rise or fall, depending on the difference between inflowswith
λ12 and outflows with λ23 or λ24.

In the long-run, i. e. when the epidemic is over, individuals will be distributed
across states 1, 3 and 4. Some individuals will never get infected. They therefore
remain in state 1 all throughout the epidemic. This finding follows from the fact
that the sickness rate λ12 from (2) falls to zero when the infection rate ρ(t) from (1)
equals its long-run value ρ̄. Note that λ12 = 0 implies from (4) that λ14 = 0 as well,
hence outflows from 1 to 4 end as well. The ratio ρ̄ is a widely accepted quantity
in epidemiology and will be quantified below. Some individuals that become sick
and are in state 2 die and move into state 3 in the long-run. Most individuals will
be in state 4 in the long-run, either after having transitioned through state 2 or
directly from state 1.

The model also displays a long-run property that is extremely useful to judge
its quantitative property in a very simple way. With a population of N individuals
and a long-run infection rate ρ̄ discussed after (1), the number of individuals that
will have been infected is ρ̄N . When a share r of all infected becomes sick, the
long-run number of individuals that were sick at some point, described in (9), is

lim
t→∞

Never
2 (t) = rρ̄N . (12)

The long-run number of reported sick individuals therefore only depends on the
long-run infection rate ρ̄ and the share r of individuals that become sick and are
reported. We will exploit this property when we discuss the effects of policy mea-
sures below.
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4 Calibration

4.1 Data

Ourmost important data source is the number of individuals that is reported to be
sick.Weobtain these outflows from state 1 to 2 from theRobert Koch Institute (RKI,
2020). These data fix the left-hand side of our time path for the number Never

2 (t)
from (9) of individuals that are ever reported as sick. To fix notation, t = 0 stands
for the 24th February 2020 and T is the day of our final observation.

It seems reasonable to assume that parameters are not constant throughout
the entire epidemic. Most centrally, the contact rate a employed in the sickness
rate (2) will change as a function of governmental regulations. The first major
measures consisted in cancelling sports events (14March) and closing schools (16
March). Other measures followed.18 Given a median incubation of 5.2 days (Lin-
ton et al., 2020, Lauer et al., 2020) and a certain delay between feeling symptoms,
contacting a doctor and getting reported at RKI (say, 2–3 days), we employ T = 21
March 2020 as our last observation to fix the contact rate a.

Data to compute the death rate from Corona are also taken from the RKI
(2020). We finally employ various sources, to be discussed in what follows, to fix
the share r of infected individuals that become sick and the long-run infection
rate ρ̄.

4.2 Targets and parameters

Parameters
Some model parameters are straightforward to fix. Concerning the recovery rate
(5), we set nrec equal to an average of 14 days despite strong heterogeneity in the
course of disease (Guan et al., 2020). The death rate follows from (11). As we want
to match the number of reported deaths from COVID-19 by T, the constant death
rate for the period from 0 to T can be computed from

λ23(t) =
Nobs
3 (t)

∫
T
0 p2 (s) dsN

, (13)

whereNobs
3 (t) is the number of deceased individuals atT. Employing this equation

yields the value of 1/500 in Table 2.

18 See https://www.macro.economics.uni-mainz.de/corona-blog/ for more details.

https://www.macro.economics.uni-mainz.de/corona-blog/
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Table 2: Parameters for the epidemic without public health measures.

nrec λ23 r η a ρ̄ α β γ

14 1/500 0.1 0.4 3.024/106 2/3 0.5751 0.8662 0.6459

A more open parameter for this epidemic (but for which there is a lot of in-
formation for other epidemics) is the long-run share of infected individuals, i. e.
the limit ρ̄ of (1). We set this equal to 0.67 meaning that once the epidemic is over,
two-thirds of the population will have been infected and one-third are still in the
original healthy state 1. As there is a lot of uncertainty concerning this value, we
consider this widely employed value of 2/3 initially. We will then also consider
one tenth of 0.67 as a lower bound further below. This lower bound is motivated
by observations fromHubei and SouthKorea discussed in Section 2.19 Another pa-
rameter which is hard to pin down is the share η of healthy individuals in state 4
(i. e. they were or are infected at some point) that can infect other individuals.
We set it equal to 0.4. We also undertake robustness analyses with respect to this
parameter.

The most interesting parameters are those that allow us to match data re-
ported by RKI. To do so, we minimize the Euclidean distance between the re-
ported data and the predicted values of the model. We target a weighted sum of
the squared difference between Never

2 (t) from (9) and observation and the newly-
sick Nnew

2 (t) from (10) and observation. More precisely, parameters a, α, β and γ
are obtained from

mina,α,β,γΣ
T
t=1 (N

ever
2 (t) − N

ever
2,observed(t))

2 + (Nnew
2 (t) − N

new
2,observed(t))

2 . (14)

We impose constraints for α, β, γ to lie between zero and one and for a to be posi-
tive. None of the constraints are binding. Table 2 presents these and all the other
parameter values.

19 One might conjecture to employ so-called reproduction numbers to get an idea about ρ̄. A re-
production number gives the number of infections in a non-immune population when one in-
fected individual is introduced. Riou and Althaus (2020) estimate this value to lie in the range of
2.0 to 2.5 for Wuhan from December 2019 to January 2020. The WHO (2020) reports it in the same
range. These reproduction numbers change over time (as our sickness rate λ12(t) changes over
time) when the population becomesmore andmore immune. One can therefore not draw conclu-
sions from these estimates about long-run values like ρ̄. We return to this point when discussing
the robustness of findings with respect to r after Figure 7 and the effects of policy measures in
Figure 9.
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We finally need to quantify r. A generally accepted benchmark says that
around 80% of infected individuals do not display any or only weak symptoms.20

The remaining share of 20% falls sick. One crucial question for equation (4), but
also for our long-run prediction from (12), is therefore the issue of reporting. If a
large share of sick individuals show up at the general practitioner who does not
test all individuals that display symptoms that might be caused by CoV-2, then
the share r of individuals that are sick and reported will bemuch lower than these
20%. We therefore set r = 0.1 and undertake robustness analyses further below.

Model for predictions
After some intermediate steps (see app. A.2), and employing the fact that we can
replace probabilities in our system (7) by expected numbers of individuals as dis-
cussed in footnote 17, we obtain our final theoretical structure,

Ṅ1(t) = −
a
r
N1(t)

1−α (N2(t) + ηN4(t))
β Nβ−α [ρ̄ −

N2(t) + N4(t)
N1(t) + N2(t) + N4(t)

]
γ
, (15a)

Ṅ2(t) = aN1(t)
1−α (N2(t) + ηN4(t))

β Nβ−α [ρ̄ −
N2(t) + N4(t)

N1(t) + N2(t) + N4(t)
]
γ

− (λ23 + n
−1
rec)N2(t), (15b)

Ṅ3(t) = λ23N2(t), (15c)
N4(t) = N − N1(t) − N2 (t) − N3(t). (15d)

This is the system we work with to compute predictions reported in what follows.
Initial conditions for our solution are Never

2 (0) = N
ever
observed(0) = 16 for 24 February

2020 (RKI, 2020),N3(0) = N4(0) = 0 andN1(0) = 83.100.000−Never
2 (0), where 83.1

million is the population size of Germany (Statistisches Bundesamt, 2020).

4.3 The goodness of fit of the calibration

We can judge the quality of our calibration in two ways. First, we can check the fit
for observed number of individuals that were ever reported as sick, Never

2 (t) from
(9). Second, we can check the quality of the match of the newly reported sick in-
dividuals, i. e. Nnew

2 (t) from (10).
The left part of Figure 4 shows the number of individuals that were ever re-

ported as sick. The observations from RKI are depicted as circles. It shows that
our parameter choices are sufficiently good to use this model for projections into

20 This percentage is from findings in Wuhan/China, see Wu and McGoogan (2020).
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Figure 4: New incidences (reported) in the model (Nnew
2 (t), curve) and in the data (dots) (left)

and the number Never
2 (t) of sick in model and data (right) for the epidemic without public health

measures.

the future.21 This impression is also confirmed from the right part of Figure 4. Ob-
viously, fitting daily values is more demanding due to the greater variance in the
data.

Figure 4 also showswhere, in the case of no public healthmeasures, Germany
would be heading to. Under the assumption that the share of sick and reported in-
dividuals out of the infected individuals is r = 0.1, the final number of reported
sick individualswill be (right part of Figure4) 5.5million. This levelwill be reached
towards the end of June.22 Hence, towards the end of the epidemic, at stable pa-
rameter values, around 7 in 100 inhabitants will have been sick (and reported).

Note that this long run value does not only come out of the solution of our
calibrated system (15). It can also be directly read from the long-run prediction in
(12), which can be written as limt→∞ Never

2 (t)/N = rρ̄. When we assume that two
thirds of the population will be infected after the epidemic, ρ̄ = 2/3, and 20%
become sick of which half are reported such that r = .1, we immediately see from
(12) that the long run share is 6.7%, i. e. around 7 in 100.

21 Appendix A.3 provides an enlarged version of this Figure 4.
22 Figure 4 intuitively shows that in the medium-run, the long-run sickness share rρ̄ from (12)
will be predictable from these observed time paths. At this point, there are too few observations
and this is not yet feasible.
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Figure 5: The number of sick individuals (s = 2) by day starting on 24 February 2020 in the
absence of public health measures.

5 Findings

5.1 The number of sick individuals and health care

The most important quantity coming out of our analysis is probably information
about prevalence, i. e. the numberN2(t) of currently sick individuals. This number
will decide whether there will be enough hospital services for all individuals.

The number of sick individuals initially rises strongly. This is the consequence
of infections. As recovery sets in only after 2 weeks, the initial period sees this
strong increase. Once the number of new sick cases reduces (as the number of in-
dividuals in state 1 decreases) and recovery sets in, the number of sick individuals
falls again. The peak will be reached in mid-May. We note that this is a prediction
for the case where individual contacts, as captured by the parameter a in (2), re-
main unchanged over time. If the policy measures in place as of 14 March have
an effect, we would expect a slowdown in the rise of N2(t). This picture therefore
shows what would have happened if no interventions had taken place. In this
case, the number of sick (and reported) individuals on a given day, taking recov-
ery into account, will rise above 1 million by the end of April.

Figure 5 also provides the maximum number of infected individuals over the
epidemic. This allows us to understand whether the number of extreme cases is
always below the level that can be handled by the German health system. The
peak of the number of sick individuals in mid-April is close to 220,000. According
to the Deutsche Krankenhausgesellschaft (2020), there are 28,000 beds available
in intensive care units (ICUs) in Germany. A fraction of these are currently avail-
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Figure 6: The probability per day (dotted) and per week (solid) to become sick in the absence of
public health measures.

able for the treatment of COVID-19 patients. Moreover, an undefined number of
additional hospital facilities with ventilation systems might be available in due
time through reorganization activities. By contrast, a large fraction of COVID-19
patients might be treatable in regular wards. While it is therefore difficult to pin
down the precise number of beds available for COVID-19 patients, a peak of more
than 1 million on a given day is definitely beyond any level that can be handled
by the health care system. The prevention of such a scenario in the end has been
the key issue of all measures currently taken by federal and state governments.
We assess these measures in Section 6.

The one ‘advantage’ of a scenario without public health measures: the epi-
demic is over fast. As the infection rate is very high, the outflow from the state of
being healthy is fast. Hence, a large share of individuals, 1− r = 90%, are infected
without showing symptoms (or weak symptoms such that they are not reported)
and they become immune (in state 4) quickly. Both Figure 4 (left) and Figure 5
show that the epidemic would be over by the end of June.

5.2 Individual risks

One of the concerns of individuals is that they might become infected. How large
is this risk in a world without interventions?

As Figure 6 shows, the risk to fall sick for each individual from (8) is very low
throughout the entire epidemic. At the peak, the probability to fall sick on a given
day (blue curve) is around 10−4. In words, 1 person in 10,000 inhabitants falls sick
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Table 3: Varying the long-run sickness rate r.

r a α β γ max{N2(t)} tmax t1000 tnew100

0.01 1.03 × 10−4 .685 .8289 .6952 182,004 23 April 15 July 19 May
0.025 1.282 × 10−4 .6707 .8397 .6113 440,135 2 May 4 Aug 24 May
0.05 12.3 × 10−4 .7505 .8513 .7921 775,478 8 May 25 Aug 25 June
0.1 3.02 × 10−5 .5751 .8662 .6459 1,56 × 106 14 May 7 Sep 17 June
0.2 2.21 × 10−5 .5481 .8847 .7511 2,9 × 106 19 May 27 Sep 16 June

per day. The probability to fall sick within a week (red curve) is of course larger
and lies at the peak at around 7 in 10,000 individuals. We emphasize again that
this is the number of sick individuals that are actually reported to the RKI.

We compare the daily risk of 1 in 10,000 or the weekly risk of 7 in 10,000 with
the long-run risk of 7 in 100 by the end of the epidemic to be or have been sick (as
discussed after Figure 4), it seems that at the individual level, the daily or even
weekly risk of the epidemic is not really a major health risk.23 It is clear, however,
that at the level of society, the epidemic is a major issue. This difference between
the individual risk and aggregate outcomes is the result of a classic negative ex-
ternality. Even individuals that take into account the overall risk of 7 in 100 to
become sick might not be concerned. If the risk of infecting others was taken into
account, individual behaviour would look differently. This is why governmental
interventions have a clear justification from the perspective of market failure and
public economics.

5.3 Robustness check

The long-run sickness rate r
Given uncertainty about the share r of individuals that become sick from an infec-
tion, we undertake robustness checks. Instead of our value of 0.1, we also solve
our model for an r ten times lower and up to twice as large – as the left column of
Table 3 shows. For each of these new values for r, we recalibrate the values for a
and α to match the initial observations of sick individuals.

Themodel predictions are very reasonable from a qualitative perspective. The
larger the individual risk r to get sick, the higher the number N2(t) of simultane-
ously sick individuals and the later the peak tmax of the epidemic.

23 This might explain behaviour of some individuals who seem to ignore governmental pleas to
reduce social interactions.
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Figure 7: The number N2(t) of sick individuals as a function of assumptions on the probability r
to get sick after an infection.

Wealso find, aswas to be expected, that a larger r implies a longer duration of
the epidemic. If we define the end of the epidemic by the day tnew100 where only 100
new incidences are reported per day, we see that the end of the epidemic lies be-
tween 19 May and 25 June. Interestingly, the end of the epidemic is not monotonic
in r.When the end of the epidemic is defined by the point in time t1000where 1,000
sick individuals are left (N(t1000) = 1000), the epidemic ends between 15 July and
27 September. Note that the t1000 definition implies much later endpoints (of one
and the same epidemic) than the tnew100 definition.

Why are these numbers important from a public health perspective? The data
section shows thatHubei andSouthKorea seem tohavemanaged to keep the long-
run ratio rρ̄ from (12) at 1 in 1,000 (Hubei) or 1 in 5000 (South Korea). If we believe
that these values are long-run values, then either the individual probability r to
get sick after infection of the long-run infection rate ρ̄ must be much lower than
the standard values shown in Table 2 or sickness probabilities r must be lower.

As no information is available at this point about the share of individuals that
are already immune to CoV-2 in Germany, one might well hope that Germany is
heading towards a Hubei long-run equilibrium. As data quality was often argued
to be an issue, our long-run ratio rρ̄ with r = 0.01 would correspond to 6.7 in
1,000 individuals that were sick at some point in the long-run (Never

2 ). This would
imply that – in the case of no public intervention – the peak in the number of sick
individuals would only be around 180,000 individuals (as the first row of Table 3
shows). The blue time path of N2(t) of Figure 7 would be relevant.
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Infections via individuals without symptoms
We also inquire into the effect of η, i. e. into the share of healthy individuals that
can infect other individuals. The value of η in Table 2 is 0.4 and we now vary it be-
tween .25 and .75. While there were qualitative changes (see appendix A.4), there
are no quantitative changes that would be of importance for any public health
questions.

6 The effect of policy measures

Given that an undamped spread of CoV-2 in society leads to high reported inci-
dencesN2(t), public healthmeasures are attempting to reduce social contacts. The
fewer social contacts, the lower infections per day. These contacts are captured by
the parameter a in (2). Now assume the number of contacts per individual is re-
stricted in some exogenous manner. Individuals are not allowed to watch soccer
matches, go to conferences, ormove around freely in their region or country.What
is the effect of thesemeasures?We also ask whether it makes a difference whether
such measures are taken at the beginning of the outbreak of infections or when
the measures are delayed for 1 month.

6.1 The experiments

We model policy measures by assuming a time path for a. The first major policy
measure, ‘shut down’ for simplicity, took place as of 14 March 2020. Sports events
from professional to amateur leagues and schools were closed. This measure is
planned to continue until 19 April 2020. As our quantitative analysis starts on 24
February, we employ parameters from Table 2 for the unrestricted epidemic. In
particular, we keep the value for the contact intensity a of individuals from Table
2. After 20 days, we reduce a to a lower level alow for the duration of this policy
measure. After 37 days, i. e. on 20 April, we return to the original level, assuming
that sports events and schooling resumes. Formally,

a(t) =
{{
{{
{

a
alow = a/2

a

}}
}}
}

for
{{
{{
{

t < 20 days
20 days ≤ t ≤ 57 days

t > 57 days

}}
}}
}

(16)

captures the shut down initiated on 13 March. For all shut down scenarios we as-
sume that alow is 50% lower compared to a.
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To understand whether a later intervention is more effective, we counterfac-
tually assume that the intervention starts 32 days later. Here we set

a(t) =
{{
{{
{

a
alow

a

}}
}}
}

for
{{
{{
{

t < 52
52 ≤ t ≤ 89
t > 89

}}
}}
}

. (17)

We call this the ‘delayed shut down’.
Finally, we investigate into the effect of extending the shut down. We extend

the period with lower social contact rate alow to last for 74 days, i. e.

a(t) =
{{
{{
{

a
alow

a

}}
}}
}

for
{{
{{
{

t < 20
20 ≤ t ≤ 94
t > 94

}}
}}
}

. (18)

This is our ‘extended shut down’.

6.2 The quantitative effects of policy measures

Baseline analysis
For this baseline analysis, we do not recalibrate the model as a in our scenarios
changes after T, the day providing the last observation used for calibration. Pa-
rameter values are therefore given by the values in Table 2. The effect of various
forms of shut downs are captured by a drop of the contact rate a by 50% to alow,
as shown in (16).

The results are shown in Figure 8. Our main variable for judging policy mea-
sures is the number N2(t) of individuals that are simultaneously sick.

First, the policy is effective. Reducing contacts reduces the speed of infec-
tions and new cases of sickness – but also the transition from healthy in state 1 to
healthy (with infection) in state 4. The casewithout shut down is illustrated by the
red curve in Figure 8. It is identical to the curve in Figure 5. The shut down from
(16) which reflects the planned closing of schools in Germany until in mid-April
is drawn as the green curve. It reduces the rise of the number of sick individuals
until mid-April. Afterwards, the number of sick individuals will rise more quickly
again. The peak is reached in June and this peak is lower than the one without
the shut down. In this respect the shut down is a good policy measure. When the
shut down is extended (the black curve), the peak is further shifted to the right
and also smaller.24

24 If we had a sequence of shut downs with breaks in between, it would qualitatively look like a
combination of the green and the blue curve. The green curve represents a shut down that ends
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Figure 8: The effect of a shut down.

Quantitatively speaking, the shut down prolongs the epidemic in terms of its
end as defined by tnew100 also employed in Table 3 (100 or fewer new incidences are
reported per day). For the shut down currently in place and for the delayed shut
down, the end is beginning of July. For the longer shut down, the end is beginning
of August. Concerning the peak demands on the health system, the shut down as
currently in place, and also an extended shut down, hardly have any effect. There
is a certain delay – which helps the health sector to prepare for higher numbers
in the future. But the level of the peak, as Figure 8 shows, hardly changes. This is
a fairly bleak outlook.

To be fair, we should stress at this point that the assumption that a shut down
reduces the contact rate and thereby the infection rate by 50% is open to empir-
ical investigation. At this point, this is a model assumption for which empirical
evidence is still lacking. Hartl et al. (2020) show that statistically convincing evi-
dence will be available at the earliest beginning of April. It seems fair to say, how-
ever, that it can hardly be expected at this point that current measures reduce the
infection rate by 50%. Hence, the above evaluation of the shut down might even
be too optimistic.25

by the end of April where the green curve starts rising quickly again. Thenwhen a new shut down
takes place as of mid-May, the number of sick individuals would follow the blue curve. When the
“blue shut down” ends by the end of May, the number of sick individuals starts rising again as
shown by the blue curve.
25 All of our scenarios could look much more optimistic if we had a vaccine. To the best of our
knowledge, this will not be available within the next 6 months.
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Is a delayed shut down a good idea?
Interestingly, a delayed shut down (blue curve) is almost as good as an extended
shut down and in some respect is even better: A delayed shut down reduces the
peak in the number of sick individuals. Hospitals are therefore less crowded with
a delayed shut down as opposed to an immediate shutdown. This implies, more
generally speaking, that there is an optimal timing for a shut down.

Why is there an optimal point for a shut down? Imagine the shut down takes
place early (green curve in Figure 8). Then the number of sick individuals does
not increase that quickly. The downside is that, once the shut down is over, there
are a lot of healthy individuals left that can become sick. The number of new in-
cidences jumps up and the peak is reached quickly. When the shut down takes
place later (the blue curve in Figure 8), the number of sick individuals is larger
at the moment the shut down starts. Once the shut down is over, the number of
healthy individuals that are left to become sick is not as large as in the case of an
early shut down. As a consequence, the peak is less high.26

In a perfect world with complete knowledge about the number of sick indi-
viduals, the long run infection rate ρ̄, the individual risk r to become sick from
an infection and other parameters employed in this model, policy makers should
therefore choose the optimal point in time for an intervention. In the world we
live in, this information is not available, neither from amedical, nor from a statis-
tical and data processing perspective. The finding nevertheless makes the strong
point that policy interventions should be conditioned on the current situation in
a country or region. Ideas that policy measures must be the same for all regions
in Germany at all points in time are strongly contradicted.27

The policy effects with lower ρ̄
To return to the uncertainty about the value of the long-run share ρ̄ of infected
individuals, we vary r in Table 3 such that we could also study a “data-quality
adjusted Hubei-scenario” where rρ̄ implies that there are 6.7 in 1,000 (ever) sick
individuals. This was discussed after Figure 7. We now study changes in ρ̄ at un-
changed r = 0.1 such that we end up at rρ̄ = 6.7/1000. We therefore reduce ρ̄ by a
factor of 10. We do recalibrate our model for this scenario as ρ̄ affects the calibra-
tion outcome. The fit is similarly good to the one discussed after Figure 4. Given

26 The idea of an optimal intervention period is explored independently in Toda (2020).
27 We understand that from a policy perspective it is simpler to “sell a measure” that is the same
for everybody than measures that differ across individuals. Yet, treating unequals as equals has
rarely been a convincing idea.
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Figure 9: The effect of changes in the long-run infection rate ρ̄.

the new parameter values, we change the contact rate according to the shut down
(16) and the extended shut down (18).

Let us start with the long-run effects. As we know from (12), the long-run ef-
fects with ρ̄ reduced by a factor of 10 are 10 times lower. This is visible in the
right part of Figure 9 displaying Never

2 (t). Once the epidemic is over, there will be
550,000 individuals that were sick at some point, one tenth of the level in Figure
4. Again, this estimate is independent of any policy measure as the latter do not
affect rρ̄.

Concerning short-run effects, we see that in the case of no intervention (or
interventions that do not have an effect), the peak comes earlier for N2(t). The red
curve in Figure 9 peaks in mid-April in contrast to early to mid-May for the higher
long-run infection rate of Figure 8. The effect of the shut down currently in place
looks qualitatively similar to the effect when ρ̄ is higher. By contrast, the extended
shut down in Figure 9 does not display a strong rise in growth rates of N2(t) once
it is over. It is directly followed by the decline in the number of sick individuals.

Most importantly, however, theses Figures 9 and 8 display a strong quanti-
tative difference. If the long run infection rate in Germany is in the “data-quality
adjusted Hubei range”, the peaks are at a much lower level. In the case without
policy measures and in the case where the current shut down (16) is the only pol-
icy measure, the peaks of the simultaneously sick number of individuals is just
above 200,000. This strongly contrasts to earlier values above 1 million. Another
difference consists in the quantitative difference here between the extended shut
down and the shut down. In the scenario with a lower long-run infection rate,
an extended shut down implies that the peak ofN2(t)will be much lower than the
peak of the normal shut down. This was not the case in Figure 8. This points to the
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fact that shut downs need to be sufficiently strong relative to the overall potential
number of sick individuals.

When the long-run infection rate is in this Hubei-range, then the epidemic is
also over more quickly than in the case of an infection rate of two thirds. In any
case, the epidemic will last until June, in the case of extended shut downs (or
other measures) it can even last until mid-July.

7 Conclusion

We have developed a model that allows us to study the spread of an infection in
a society. We have solved this model and calibrated it to the COVID-19 epidemic
in Germany. We employ the observed number of reported infections to match the
initial increase of the number of sick individuals. In addition, we employ param-
eter values from the medical literature to quantify e. g. long-run infection rates or
individual risks to become sick after an infection. Given uncertainty about the pre-
cision of these parameter values, we undertook robustness checks with respect to
this long-run measure.

Whenwe studied the effect of policymeasures in Germany, we found that any
intervention that reduces the contact rate of individuals reduces the strength of
the epidemic. Both the peak of the number of simultaneously sick individuals as
well as the individual sickness risk go down. This decrease is stronger the longer
the policy measure lasts.

We also find, however, that there is an optimal point in timewhenan interven-
tion, effective for a fixed length of time (say, 3weeks), should start.When the inter-
vention starts too early, there are “toomany” healthy individuals left at the end of
the intervention. The rise in the number of sick individuals would be accelerated.
When the intervention starts later, thenumber of sick individuals is larger initially.
Once the intervention is over, there are, as a consequence, not so many healthy
individuals left and the peak is smaller. While implementing optimal schemes for
real world societies probably requires too much information, this finding points
towards implementing policy measures which are contingent on the current situ-
ation (number of sick individuals per capita) of a region or country.

In the long-run, for given parameters, the number of sick individuals is not af-
fected by policymeasureswhen the latter only reduce contact rates of individuals.
All findings are subject to large uncertainty given little knowledge about long-run
infection rates following a CoV-2 epidemic and individual sickness rates. It seems
to be certain, however, that the epidemicwill last at least until July, given the pub-
lic health measures in place. Even in the case of a good scenario with extremely
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low long-run infection rates, the peak of the number of simultaneously sick indi-
viduals will lie above 200,000 individuals.

Many extensions of this framework are worth undertaking. First, optimal be-
haviour of individuals could be taken into account. The activity parameter a is like
the outcome of decisions of individuals on how much to work and how much to
enjoy social interactions. One can imagine a trade-off between reducing the risk
of getting infected by lowering a andworking fewer hours and thereby experienc-
ing lower labour income. The same trade-off is present at the aggregate level to
be tackled by a government. Such a trade-off might also include behavioural fea-
tures like anxiety as in Caplin and Leahy (2001), potentially in a simplified way
as presented in Wälde and Moors (2017). These extensions will help us to better
understand the challenges posed by this pandemic.

A more detailed modelling of the long-run infection rate would also be use-
ful. The path of social contacts over time should have an influence on the share of
infected individuals in the long-run. A more detailed matching mechanism than
the one employed here – borrowed in spirit from search and matching models
– should be developed. This would also broaden the applicability of our frame-
work to other epidemics and pandemics. The central trade-off faced by decisions
makers about health costs vs. economic considerations should also be included
in future work. Data on employment effects of COVID-19 should be forthcoming
soon. A theoretical framework that allows to look at labour market effects should
then prove useful to quantify this trade-off.

Finally, the calibration process employed here can be extended to full struc-
tural estimation. Further, the effects of the policymeasures in place since 14March
can be estimated or calibrated. The calibration in this paper employs data up to
the point where measures of 14 March should start having an effect. By the end of
March, the intervention regime discussed above and the corresponding (reduced)
contact rate could be quantified. This would provide a good idea of the effects of
these policy measures.

Appendix A

A.1 Data sources

Data sources and calculations
The data used in this note is taken from two sources: (i) the World Health Organ-
isation’s Situation reports on the progress of COVID-19, and (ii) the dataset put
together by the nCoV-2019 Data Working Group (Dong et al. (2020)). In particular,
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wherever available the data from the nCoV-2019 Group is used instead of the data
from the WHO, in an effort to remain as consistent as possible by using only one
source at a time.Data from thenCoV-2019Group is usedas it provides a centralised
and standardised repository of multiple official sources.

Figures 1 and 2 showing the number of new confirmed cases at a date t were
produced by computing the difference between the cumulative total number of
confirmed cases at tminus the cumulative total number of confirmed cases at t−1,
i. e.

new casest = total casest − total casest−1.

As detailed in the Table 1, the infection rate is computed by dividing the cumula-
tive total number of confirmed cases as of the time of writing by the population of
the corresponding country in 2019.Meanwhile, the risk factor is simply the inverse
of that fraction and is given by the total population divided by the cumulative total
number of confirmed cases, i. e.

Infection Rate in % = total cases
population2019

×100⇔ Risk of infection =
population2019
total cases

.

A.2 Intermediate steps for (15)

Recall (2) and write it as

λ12(t) = aN1(t)
−α (N2(t) + ηN4(t))

β [ρ̄ −
N2(t) + N4(t)

N1(t) + N2(t) + N4(t)
]
γ

= a(N1(t)
N
N
)
−α
(N2(t)

N
N
+ ηN4(t)

N
N
)
β
[ρ̄ −

p2(t) + p4(t)
p1(t) + p2(t) + p4(t)

]
γ

where the fraction in squared brackets was multiplied byN/N as well and we em-
ployed ps(t) = Ns(t)/N . Applying this to term one and two as well,

λ12(t) = ap1(t)
−α (p2(t) + ηp4(t))

β Nβ−α [ρ̄ −
p2(t) + p4(t)

p1(t) + p2(t) + p4(t)
]
γ
.

If wewant homogeneity of degree 0, wewould set α = β. Employing the transition
rate λ14 from (4) and taking λ24 from (5) into account, our model in (7) becomes

ṗ1(t) = − (λ12 (t) +
1 − r
r

λ12(t)) p1(t)

= −
λ12(t)
r

p1(t) (19)
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= −
a
r
p1(t)
−α (p2 (t) + ηp4(t))

β Nβ−α [ρ̄ −
p2(t) + p4(t)

p1(t) + p2(t) + p4(t)
]
γ
p1(t) (20)

ṗ2(t) = λ12(t)p1(t) − (λ23 + n
−1
rec) p2(t), (21)

= ap1(t)
−α (p2(t) + ηp4(t))

β Nβ−α [ρ̄ −
p2(t) + p4(t)

p1(t) + p2(t) + p4(t)
]
γ
p1(t)

− (λ23 + n
−1
rec) p2(t) (22)

ṗ3(t) = λ23p2(t) (23)

Simplifying, we get (15) in the main text.

A.3 Goodness of fit

We provide a graphical illustration of howwell our parameter choice via the min-
imization procedure in (14) fits the data.

Figure 10: Enlarged version of Figure 4 with data and model fit.

A.4 Comparative statics for η

We assume that a share η of individuals in state 4 can infect individuals in state 1.
This captures the fact that some infected individuals do not display symptoms
but are nevertheless infectious. We vary the parameter η here to see how much
the dynamics of prevalence N2(t) is affected by this parameter.
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Figure 11: The effect of how infectious (η) infected individuals without symptoms are.

As this figure shows, the magnitude of η only has minor effects on prevalence
N2(t). This is in strong contrast to the importance of, say, r on prevalence as shown
in Figure 7.
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