| Motivation | Model | Results | Conclusion | Background |
|------------|-------|---------|------------|------------|
|            |       |         |            |            |

# Designing QE in a fiscally sound monetary union

## Tilman Bletzinger (ECB) and Leopold von Thadden $(ECB)^1$

July 2018

<sup>&</sup>lt;sup>1</sup>The views expressed in this paper do not necessarily reflect those of the ECB.

| Overview of the presentation |          |           |            |             |  |  |
|------------------------------|----------|-----------|------------|-------------|--|--|
| 000000000                    | 00000000 | 000000000 | 00         | 00000000000 |  |  |
| Motivation                   | Model    | Results   | Conclusion | Background  |  |  |

#### Overview of the presentation

### Motivation

### 2 The model

### In the second second

### Conclusion

| Motivation  | Model       | Results   | Conclusion | Background  |
|-------------|-------------|-----------|------------|-------------|
| 000000000   | 00000000    | 000000000 | 00         | 00000000000 |
| Main points | of the pape | r         |            |             |

- Consider a tractable model of a **monetary union (with potentially asymmetric member countries**) in which the single short-term rate reaches the lower bound constraint
- How to design QE? (Portfolio composition? Risk Sharing?)
- **Goal:** replicate the allocations and welfare levels that would have prevailed under an unconstrained Taylor-type interest rate rule
- Results depend on (in)completeness of MU:
   Clear-cut results if MU has a sound fiscal structure
   Complexities arise if fiscal framework is incomplete (needs future work in a strategic setting)

| Motivation  | Model       | Results   | Conclusion | Background  |
|-------------|-------------|-----------|------------|-------------|
| ●000000000  | ooooooooo   | 000000000 | 00         | 00000000000 |
| EA QE: star | ting points |           |            |             |

#### Theory : No obvious theoretical reference point

#### (Standard) **Dimension 1: Single economy** "The problem with QE is it works in practice but it doesn't work in theory" (Ben Bernanke)

### (Extra) Dimension 2: Monetary union

"... Usually, the fiscal implications are dealt with easily within a one-country framework, between the central bank and the treasury. But in the euro area, there is no European treasury..." (Mario Draghi)

### $\rightarrow$ What is lacking?

Monetary union models which reconcile Eggertsson/Woodford with

- 1) Tobin (portfolio balance channel) and
- 2) Mundell (non-strategic issues) and Chari/Kehoe (strategic issues)

| Motivation | Model         | Results   | Conclusion | Background |
|------------|---------------|-----------|------------|------------|
| o●oooooooo | 00000000      | 000000000 | 00         | 0000000000 |
| EA QE: st  | arting points |           |            |            |

**Reality** (2014): Monetary Policy

Inflation at risk to be too low for too long, while MP close to the effective lower bound

What to do?

• **Standard QE recipe** (of stand alone economies)?

CB to support aggregate demand by purchasing longer-term gov't debt (portfolio rebalancing) plus forward guidance (signalling)



#### Reality (2014): Many fiscal policies

# Fiscal framework suffers from weak governance of national policies and no appetite for a fiscal union

- Very uneven distribution of fiscal space (and since 2010 loss of market access as a reality)
- Missing notion of aggregate fiscal stance (which matters at ZLB)
- Unclear notion of riskiness of national debt
- Absence of area-wide safe (parts of) gov't debt (SBBS; Eurobonds)
- Treaty logic ("no bail out"): government budget constraints to be kept separate



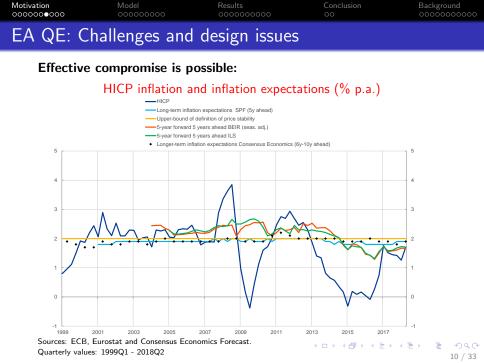
#### Reality (2014): Many fiscal policies

Spirit of no bail-out idea got modified in the course of IMF-type conditional support:

• Logic for programme countries follows Farhi/Tirole (2016), i.e. if fiscal positions of member countries are very different, ex post solidarity is reasonable, but this is different from unconditional ex-ante risk sharing



- Motivation of EA QE is clear: area-wide inflation outlook
   → SAPI-criteria (sustained adjustment in the path of inflation)
- Yet, design of **QE** in a (fiscally) incomplete MU is non-trivial → it touches on the critical intersection of MP and FP
- How to find a compromise between Stimulus vs. Incentives?
   → Brunnermeier et al (2016) "The euro and the battle of ideas"


How to find a compromise between Stimulus vs. Incentives?

• Stimulus-camp: QE needed to boost demand in order to avoid losses from missing the inflation objective

Avoidance of these losses is particularly important in a MU, since nominal anchoring is key

9 / 33

 Incentives-camp: QE is critically seen since it invites for detrimental free-riding of governments
 Erosion of fiscal framework is particularly costly in a MU (see: Chari/Kehoe, 2008)



 Motivation
 Model
 Results
 Conclusion
 Background

 cocococcoco
 cocococcoco
 cocococcoco
 cocococcoco
 cocococcoco

 EA QE: Challenges and design issues
 cococccccc
 cocccccccc

Effective compromise is possible:

 $\rightarrow$  Eurosystem has exploited that QE in a MU is a multidimensional tool and has been mindful of incompleteness of EMU

 $\rightarrow$  Key parameters of PSPP (in addition to standard ones, known e.g. from US) carefully calibrated at the boundary of MP and FP

- (Strongly) limited risk sharing (singleness of MP vs. incentives for sound national FPs)
- Portfolio weights (purchases guided by capital key)
- **Issuer and issue limits** (123-related concerns, avoidance of strategic role in debt restructuring)

- $\rightarrow$  EA QE complements a broad range of other non-standard tools
  - TLTRO's: long-term provision of liquidity to banks
  - NIRP
  - (Chained) Forward guidance
  - ABSPP, CBPP, CSPP
  - ELA: provision of emergency liquidity, no risk sharing
  - OMT: country-specific support, risk-shared, conditionality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

12 / 33

| Motivation | Model       | Results   | Conclusion | Background  |
|------------|-------------|-----------|------------|-------------|
| 00000000●  | 00000000    | 000000000 | 00         | 00000000000 |
| EA QE: de  | sign issues |           |            |             |

#### Research agenda:

Role of key parameters to be assessed by model-based work which  $\rightarrow$  recognises current trade-offs (*recall:* Stimulus vs. Incentives)  $\rightarrow$  allows for feasible changes of EA architecture over time

#### 5PR as a reference point for short vs. long-term outcomes:

"...Progress will have to follow a sequence of short- and longer-term steps, but it is vital to establish and agree the full sequence today. The measures in the short-term will only increase confidence now if they are the start of a larger process, a bridge towards a complete and genuine EMU." (5PR)

Example: EA safe assets would affect trade-offs

| Motivation  | Model     | Results   | Conclusion | Background  |
|-------------|-----------|-----------|------------|-------------|
| 000000000   | ●oooooooo | 000000000 | 00         | 00000000000 |
| Our approad | ch        |           |            |             |

- $\rightarrow$  Analytics of such agenda are tricky
- $\rightarrow$  Proceed stepwise, use backward induction

Step 1 (Current paper: "Designing QE in a fiscally sound monetary union")

- Assume, counterfactually, MU has a complete fiscal framework
- $\rightarrow$  How to design EA QE in an extended 2-country monetary union model à la **Benigno (2004)** with

i) portfolio balance channel (s.t. QE works!) and

ii) (occasionally) binding lower bound constraint

but maintain iii) standard and stable fiscal feedback rules

#### Step 2 (work in progress: strategic issues)

- Relax iii) and reconsider design of EA QE in an incomplete fiscal set-up
- Idea: consider variation à la Chari/Kehoe (2008) and allow for Nash vs optimal outcomes, i.e. expansionary effects of EA QE to be weighted against adverse incentive effects under non-cooperative FP's

| Motivation  | Model     | Results   | Conclusion | Background  |
|-------------|-----------|-----------|------------|-------------|
| 000000000   | o●ooooooo | 000000000 | 00         | 00000000000 |
| Our approad | ch        |           |            |             |

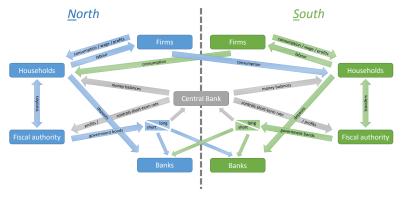
Step 3 (work in progress: non-strategic issues)

- Use **country-specific QE in normal times** even when interest rates are not constrained
- Idea: create sufficient country-specific instruments in a monetary union, opposing the shortage of instruments as described by Mundell
- Questions: how to **optimally** design QE in a monetary union above the lower bound? Is the **same welfare level as in a single economy** for all member states possible?

| Motivation | Model     | Results   | Conclusion | Background  |
|------------|-----------|-----------|------------|-------------|
| 000000000  | oo●oooooo | 000000000 | 00         | 00000000000 |
| Model benc | hmark     |           |            |             |

#### How to design QE?

Particularly relevant benchmark in a monetary union:


• Outcomes that would have been realised if there had been no lower bound constraint on the **common** short-term interest rate

| Motivation   | Model     | Results   | Conclusion | Background  |
|--------------|-----------|-----------|------------|-------------|
| 000000000    | ooo∙ooooo | 000000000 | 00         | 00000000000 |
| Key features |           |           |            |             |

- Analytical starting point: 3-equation New Keynesian model delivers ineffectiveness result of QE at the ZLB
- We embed this model as a parametric special case in a 2-country monetary union model with banks, extending Benigno (2004)
- HH accumulate wealth via **deposits** (with banks) and **real balances**, and consume differentiated goods from both countries (*N*, *S*) with home bias
- Banks, acting like mutual funds, invest in **short- and long-term** government bonds of both countries
- Passive fiscal policy: short- and long-term bonds follow **well-behaved** feedback rules







| Motivation   | Model     | Results   | Conclusion | Background  |
|--------------|-----------|-----------|------------|-------------|
| 000000000    | ooooooooo | 000000000 | 00         | 00000000000 |
| Real effects | s of QE   |           |            |             |

• Issue: irrelevance proposition of Wallace (1981) and Eggertsson and Woodford (2003)

 $\rightarrow$  QE is ineffective at the lower bound constraint

• Tobin and Brainard (1963) observe **imperfect substitutability**: positive relationship between relative portfolio shares and asset returns

We model the portfolio balancing channel via:

- imperfect substitutability between bonds of different maturities due to portfolio adjustment costs (Harrison, 2012; Andrés et al., 2004), e.g.:
  - preferences ("preferred habitat" à la Vayanos und Vila, 2009)
  - regulation requirements
  - transaction costs
- Inther imperfect substitutability between domestic and foreign long-term bond holdings due to home bias

| Motivation   | Model     | Results   | Conclusion | Background  |
|--------------|-----------|-----------|------------|-------------|
| 000000000    | ooooooooo | 000000000 | 00         | 00000000000 |
| Deposit rate |           |           |            |             |

• Deposits are claims against the bank's portfolio of short- and long-term bonds issued in both countries subject to portfolio adjustment costs and home bias in long-term holdings.

 $\rightarrow$  Rates of return on deposits are weighted averages of short-term and long-term rates and thus **heterogeneous** across the union:

$$\hat{R}_{D,t}^{N} = \frac{1}{1+\delta} \hat{R}_{S,t} + \frac{\delta}{1+\delta} \left[ \omega_{N} \hat{R}_{L,t+1}^{N} + (1-\omega_{N}) \hat{R}_{L,t+1}^{S} \right]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへの

20 / 33

• Compared with New Keynesian benchmark, non-negativity of deposit rates replaces ZLB constraint on short-term interest rates.

| Motivation | Model      | Results   | Conclusion | Background  |
|------------|------------|-----------|------------|-------------|
| 000000000  | oooooooooo | 000000000 | 00         | 00000000000 |
| Central ha | nk         |           |            |             |

Stylised balance sheet of the central bank in our monetary union:

| Assets           | 5                                                    | Liabilities          | 6               |
|------------------|------------------------------------------------------|----------------------|-----------------|
| Short-term bonds | $\alpha B_{SC}^N$                                    | Money in circulation | αM <sup>N</sup> |
| Long-term bonds  | $(1-\alpha)B_{SC}^{SC}_{\alpha Q^N}$ $(1-\alpha)Q^S$ |                      | $(1-\alpha)M^S$ |

- **Conventional MP**: short-term Taylor-type interest rate rule (reacting to union-wide inflation rate and output gap)
- Short-term bonds are perfect substitutes to ensure same short-term rate across countries
- Unconventional MP: (potentially) country-specific purchases of long-term bonds ("QE")

• Monetary union allows (via TARGET-balances):  $B_{SC}^N + Q^N \neq M^N$  $\rightarrow$  Additional funding channel for  $c^N \neq y^N$ 

| Motivation   | Model     | Results   | Conclusion | Background  |
|--------------|-----------|-----------|------------|-------------|
| 000000000    | oooooooo● | 000000000 | 00         | 00000000000 |
| Risk sharing |           |           |            |             |

• Current assumption:

Regular CB income on short-term bond holdings: **shared** QE-related CB income on long-term bond holdings: **not shared** 

• Deeper analysis of risk sharing requires strategic setting

| Motivation | Model     | Results    | Conclusion | Background  |
|------------|-----------|------------|------------|-------------|
| 000000000  | 000000000 | ●000000000 | 00         | 00000000000 |
| <u> </u>   |           |            |            |             |

### Symmetric monetary union

- *N* = *S*
- Model consists of

$$\hat{c}_{t}^{N} = \hat{c}_{t+1}^{N} - \sigma \left[ \hat{R}_{D,t}^{N} - \hat{\pi}_{c,t+1}^{N} - \hat{r}_{n,t}^{N} \right]$$
(1)

$$\hat{\pi}_{c,t}^{N} = \beta \hat{\pi}_{c,t+1}^{N} + \frac{\varepsilon - 1}{\chi} (\psi + \frac{1}{\sigma}) \hat{c}_{t}^{N}$$
<sup>(2)</sup>

$$\hat{R}_{S,t} = \rho_R \hat{R}_{S,t-1} + (1 - \rho_R) \left[ \phi_\pi \hat{\pi}_{c,t}^N + \phi_y \hat{c}_t^N \right] + \varepsilon_{R,t}$$
(3)

and

$$\hat{R}_{Dt}^{N} = \hat{R}_{St} + \widetilde{\nu}_{1} \left[ \hat{b}_{LPt}^{N} - \hat{b}_{SPt}^{N} \right]$$
(4)

and further equations

**Special case:** In the absence of portfolio adjustment costs ( $\tilde{\nu}_1 = 0$ ), model is isomorphic to New Keynesian 3-equation model:

 $\rightarrow$  Eggertsson/Woodford: QE is ineffective, while forward guidance is not

23 / 33

э

| Motivation | Model      | Results    | Conclusion | Background  |
|------------|------------|------------|------------|-------------|
| 000000000  | 000000000  | o●oooooooo | 00         | 00000000000 |
| Symmetric  | monetary u | nion       |            |             |

General case  $(\tilde{\nu}_1 > 0)$ :

- Unconstrained interest rate rule outcomes can be replicated via QE-augmented policy rule
- Caveat: Initial shock is not too large (such that unconstrained deposit rates remain non-negative:  $R_{D,t}^{N*} \ge 1$ )
- QE remains effective until yield curve becomes flat (leading in the limit to zero deposit rates)

#### Intuition for Replicability:

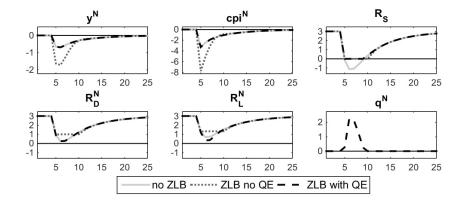
- deposit rates drive dynamics in consumption Euler equation
- use appropriately scaled QE purchases to replicate unconstrained deposit rates and, hence, unconstrained outcomes of all welfare relevant variables
  - $\rightarrow$  see: Proposition 1



**Proposition I:** Consider the equilibrium allocation  $A^{N*} = \{\hat{c}_t^{N*}, \hat{h}_t^{N*}, \hat{m}_t^{N*}\}_{t=0}^{\infty}$  of welfare relevant variables in a symmetric monetary union that results from an unconstrained interest rate rule consistent with  $R_{D,t}^{N*} \ge 1$ , leading to a welfare level  $W^{N*}$ . If the lower bound constraint on short-term interest rates makes it not feasible to implement this allocation with a conventional policy rule, then there exists a QE-augmented policy rule which respects the lower bound and replicates  $A^{N*}$  and, thus,  $W^{N*}$ .

・ロト ・ 四ト ・ 日ト ・ 日下

25 / 33


**Corollary 1:** Features of the QE-augmented policy rule:

- 1. If  $R_{S,t}^* \ge 1$ , set  $R_{S,t} = R_{S,t}^*$  and if  $R_{S,t}^* < 1$ , set  $R_{S,t} = 1$
- 2. For  $t < t_1$ , set  $q_t^N = 0$ , while for  $t \ge t_1$  set  $q_t^N \ge 0$



# Symmetric monetary union

#### Experiment 1: MU with symmetric shocks and symmetric structures



<ロト < 部ト < 言ト < 言ト 言 のへの 26 / 33

| Symmetric  | : monetary u | nion      |            |             |
|------------|--------------|-----------|------------|-------------|
| Motivation | Model        | Results   | Conclusion | Background  |
| 000000000  | 00000000     | 000000000 | 00         | 00000000000 |

**Comment 1:** QE augmented policy rule preserves standard assignments of active MP and passive FP even if short-term rate reaches lower bound

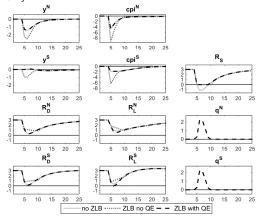
**Comment 2:** For large shocks (s.t.  $R_{D,t}^{N*} < 1$ ), QE becomes ineffective, but forward guidance remains effective (see appendix)

|            | ic monetary  |            |            | 0000000000  |
|------------|--------------|------------|------------|-------------|
| Motivation | <b>Model</b> | Results    | Conclusion | Background  |
| 000000000  | 00000000     | 00000●0000 |            | 00000000000 |

- $N \neq S$  in terms of a) shocks or b) structures
- Additional features: Current account imbalances (funded by CB via TARGET-balances or privately by integrated financial markets; see appendix)
- QE: CB has two instruments (q<sup>N</sup><sub>t</sub>, q<sup>S</sup><sub>t</sub>) for asymmetric monetary union:
   → Proposition 1 can be extended to Proposition 2:



**Proposition 2:** Consider the equilibrium allocation of welfare relevant variables, consisting of the pair  $A^{N*} = \{\hat{c}_t^{N*}, \hat{h}_t^{N*}, \hat{m}_t^{N*}\}_{t=0}^{\infty}$  and  $A^{S*} = \{\hat{c}_t^{S*}, \hat{h}_t^{S*}, \hat{m}_t^{S*}\}_{t=0}^{\infty}$ , that results from an unconstrained interest rate rule consistent with  $R_{D,t}^{N*} \ge 1$  and  $R_{D,t}^{S*} \ge 1$ , leading to welfare levels  $W^{N*}$  and  $W^{S*}$ . If the lower bound constraint on short-term interest rates makes it not feasible to implement this allocation with a conventional policy rule, then there exists a QE-augmented policy rule which respects the lower bound and replicates  $A^{N*}$  and  $A^{S*}$  and, thus,  $W^{N*}$  and  $W^{S*}$ .

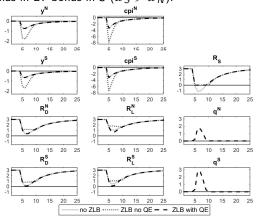

**Corollary 2:** Features of the QE-augmented policy rule: 1. If  $R_{S,t}^* \ge 1$ , set  $R_{S,t} = R_{S,t}^*$  and if  $R_{S,t}^* < 1$ , set  $R_{S,t} = 1$ 2. For  $t < t_1$  set  $q_t^N = q_t^S = 0$ , while for  $t \ge t_1$  set  $q_t^N \ge 0$  and  $q_t^S \ge 0$ 



### Asymmetric monetary union

Experiment 2: MU with asymmetric shocks, but symmetric structures (*here:* homogeneous transmission channel)

Shock realises only in N:




 $\rightarrow$  purchases with symmetric portfolios (= "capital key"):  $q_{\mathcal{D}}^{S} = q_{\mathcal{D}}^{N}$ 



Experiment 3: MU with symmetric shocks, but asymmetric structures (*here:* heterogeneous transmission channel)

Larger home bias in LT bonds in S ( $\omega_S > \omega_N$ ):



 $\rightarrow$  purchases with asymmetric portfolios ( $\neq$  "capital key");  $q_{\downarrow}^{S} > q_{\downarrow}^{N} q_{\downarrow}^{S} = N$ 

31 / 33

| Motivation | Model    | Results    | Conclusion | Background  |
|------------|----------|------------|------------|-------------|
| 000000000  | 00000000 | 000000000● | 00         | 00000000000 |
| Asymmetric | monetary | union      |            |             |

How to read Experiment 2 vs. 3?

- Lower bound applies symmetrically if structures are symmetric  $\rightarrow$  QE according to capital key
- Asymmetric structures create asymmetric private demand patterns for long-term bonds which do not fully realise due to the lower bound
   Asymmetric QE needs to make up for the asymmetric patterns

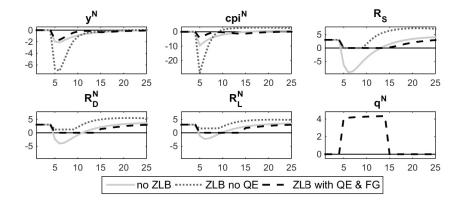
# Recall: no scope for opportunistic behaviour by assumption! $\rightarrow$ capital key becomes a natural margin for QE design under current circumstances

 $\rightarrow$  Paper is consistent with the ECB offering a range of distinct facilities, e.g.: QE: unconditional area-wide stimulus, guided by capital key, to lift inflation OMT: conditional support for structural reforms, country-specific

| Motivation | Model    | Results   | Conclusion | Background  |
|------------|----------|-----------|------------|-------------|
| 000000000  | 00000000 | 000000000 | ●0         | 00000000000 |
| Conclusion |          |           |            |             |

- New Keynesian 3-equation model extended to a 2-country monetary union model with banks
- Effectiveness of QE at the lower bound via portfolio adjustment costs? Idea: non-negativity of deposit rates replaces the non-negativity of short term policy rate
- Sound fiscal governance structure:

QE portfolio of CB can be adjusted to replicate unconstrained outcomes resulting from a standard Taylor-like interest rate rule


- Key modelling challenge: incorporate strategic trade-offs arising from current fiscal incompleteness of EMU
- 1<sup>st</sup> best: make MP more effective via balanced reforms of EA architecture

| Motivation | Model | Results | Conclusion | Background |
|------------|-------|---------|------------|------------|
|            |       |         | 00         |            |

#### Thank you for your attention!



Experiment 4: Approximating unconstrained outcomes with QE and FG



<ロト < 部ト < 言ト < 言ト 言 のへの 35 / 33 Motivation Model Results Conclusion of October Background October BACKGROUND: Households (1)

The representative household in N obtains utility from overall consumption  $(c^N)$  and real money balances  $(\frac{M^N}{P_c^N})$ , and disutility from hours worked  $(h^N)$ . The country-specific CPI is given by  $P_c^N$ .

The lifetime utility function is :

$$\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \phi_{t}^{N} \left[ \frac{\left(c_{t}^{N} - \varsigma c_{t-1}^{N}\right)^{1-\sigma^{-1}}}{1-\sigma^{-1}} - \frac{\left(h_{t}^{N}\right)^{1+\psi}}{1+\psi} + \frac{\chi_{m}^{-1}}{1-\sigma_{m}^{-1}} \left(\frac{M_{t}^{N}}{P_{c,t}^{N}}\right)^{1-\sigma_{m}^{-1}} \right]$$
  
s.t.  $D_{t}^{N} + M_{t}^{N} + P_{c,t}^{N} c_{t}^{N} = R_{D,t-1}^{N} D_{t-1}^{N} + M_{t-1}^{N} + W_{t}^{N} h_{t}^{N} + \Gamma_{t}^{N}$ 

- Variables denoted in per-capita terms (sizes of N and S are  $\alpha$  and  $1 \alpha$ ).
- Nominal variables are deflated with the country-specific consumer price.
- Only *N* equations are shown. Those for *S* look symmetrical (with the exception that the terms of trade *T<sub>t</sub>* take the opposite sign).

# BACKGROUND: Households (2)

The optimality conditions in log-linear terms are:

$$\begin{split} (1 - \varsigma\beta)M\hat{U}C_t^N &= -\frac{1}{\sigma(1 - \varsigma)} \left[ \hat{c}_t^N - \varsigma \hat{c}_{t-1}^N \right] + \frac{\varsigma\beta}{\sigma(1 - \varsigma)} \left[ \hat{c}_{t+1}^N - \varsigma \hat{c}_t^N \right] + \varsigma\beta\hat{r}_{n,t+1}^N \\ M\hat{U}C_t^N &= M\hat{U}C_{t+1}^N + \left[ \hat{R}_{D,t}^N - \hat{\pi}_{c,t+1}^N - \hat{r}_{n,t}^N \right] \\ \psi\hat{h}_t^N &= \hat{w}_t^N + M\hat{U}C_t^N \\ \hat{m}_t^N &= -\sigma_m M\hat{U}C_t^N - \frac{\sigma_m\beta}{1 - \beta}\hat{R}_{D,t}^N \end{split}$$

where the natural rate of interest is defined as  $\hat{r}_{n,t}^N \equiv -(\hat{\phi}_{t+1}^N - \hat{\phi}_t^N)$  and follows an exogenous AR(1) process:

$$\hat{r}_{n,t}^{N} = \rho_r \hat{r}_{n,t-1}^{N} + \varepsilon_{n,t}^{N}$$

37 / 33

- $\sigma > 0$  elasticity of intertemporal substitution
- $\psi > 0$  wage elasticity of labor supply
- $\sigma_m > 0$  interest elasticity of money demand
- $\varsigma \in [0,1]$  habit formation in consumption



The consumption bundle  $c^N$  is assumed to be given by a CES function that consists of domestic  $c_D^N$  and foreign goods  $c_F^N$ :

$$\boldsymbol{c}^{\boldsymbol{N}} \equiv \left[\lambda_{\boldsymbol{N}}^{\frac{1}{\eta}}(\boldsymbol{c}_{\boldsymbol{D}}^{\boldsymbol{N}})^{\frac{\eta-1}{\eta}} + (1-\lambda_{\boldsymbol{N}})^{\frac{1}{\eta}}(\boldsymbol{c}_{\boldsymbol{F}}^{\boldsymbol{N}})^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

- λ<sub>N</sub> ∈ [0, 1] share of domestic goods in the consumption basket consumed by the household (a natural index of openness)
- $\eta > 0$  elasticity of substitution between *Domestic* and *Foreign* goods.

Aggregate demand in *N* (log-linearised already):

$$\hat{y}_t^N = \lambda_N \hat{c}_t^N + (1 - \lambda_N) \hat{c}_t^S + \eta (1 - \lambda_N) (\lambda_N + \lambda_S) \hat{T}_t$$

イロト ( 同 ) ( ヨ ) ( ヨ ) ヨ ) の

38 / 33

• Consumer prices are:  $\hat{\pi}_{c,t}^N = \lambda_N \hat{\pi}_{p,t}^N + (1 - \lambda_N) \hat{\pi}_{p,t}^S$ 



In each country, a continuum of monopolistically competitive firms sell their differentiated goods in the domestic and foreign market. Only labour enters the production function (in log-linear terms):

$$\hat{y}_t^N = \hat{h}_t^N$$

The NK Phillips curve features nominal price rigidity à la Rotemberg:

$$\hat{\pi}_{\rho,t}^{N} = \beta \hat{\pi}_{\rho,t+1}^{N} + \frac{\varepsilon - 1}{\chi} \left[ \hat{w}_{t}^{N} + (1 - \lambda_{H}) \hat{T}_{t} \right]$$

with law of motion for the terms of trade  $\left(T_t \equiv \frac{P_{p,t}^S}{P_{p,t}^N}\right)$ 

$$\hat{T}_t = \hat{T}_{t-1} + \hat{\pi}_{p,t}^S - \hat{\pi}_{p,t}^N$$

 Motivation Model Results Conclusion Background

# BACKGROUND: Banks

In each country, banks accept deposits and invest in short- and long-term bonds of both countries, facing portfolio adjustment costs and home bias for long-term bonds. Short-term bonds are perfect substitutes.

• The profit maximisation is given by:

$$\begin{split} \max \mathbb{E}_{t} [R_{S,t}B_{SP,t}^{N} + R_{L,t+1}^{N}B_{LD,t}^{N} + R_{L,t+1}^{S}B_{LF,t}^{N} - R_{D,t}^{N}D_{t}^{N} \\ &- \frac{\nu_{1}}{2} \left( \delta \frac{B_{SP,t}^{N}}{B_{LP,t}^{N}} - 1 \right)^{2} P_{P,t}^{N} - \frac{\nu_{2}}{2} \left( \frac{\omega_{N}}{1 - \omega_{N}} \frac{B_{LF,t}^{N}}{B_{LD,t}^{N}} - 1 \right)^{2} P_{P,t}^{N}] \\ \text{s.t. } D_{t}^{N} = B_{SP,t}^{N} + B_{LP,t}^{N} \\ B_{SP,t}^{N} = B_{SD,t}^{N} + B_{SF,t}^{N} \\ B_{LP,t}^{N} = B_{LD,t}^{N} + B_{LF,t}^{N} \end{split}$$

The optimality conditions yield (in log-linear terms):

• Deposit rate: weighted average of short- and long-term rates

$$\hat{R}_{D,t}^{N} = \frac{1}{1+\delta}\hat{R}_{S,t} + \frac{\delta}{1+\delta} \left[ \omega_{N}\hat{R}_{L,t+1}^{N} + (1-\omega_{N})\hat{R}_{L,t+1}^{S} \right]$$

• Maturity and regional spreads: similarly proportional to portfolio shares

40 / 33

 Motivation
 Model
 Results
 Conclusion
 Background

 000000000
 000000000
 00
 00
 000000000

# BACKGROUND: Fiscal policy

Fiscal policy requires to finance debt payments (interest+principal) and lump-sum transfers to domestic households using debt and seigniorage.

- Long-term bonds are modelled as consols  $B_{consols}^N$  with value  $V^N$  with no maturity and one nominal unit as return each period.
- Nominal outstanding long-term debt:  $B_{LGt}^N = V_t^N B_{consols,t}^N$

• The return is given by: 
$$R_{L,t}^N = rac{1+V_t^N}{V_{t-1}^N}$$

The government budget constraint is:

$$B_{SG,t}^{N} + B_{LG,t}^{N} + S_{t}^{N} = R_{S,t-1}B_{SG,t-1}^{N} + R_{L,t}^{N}B_{LG,t-1}^{N} + P_{c,t}^{N}\tau_{t}^{N}$$

The fiscal rules keep the real debt structure constant and determine lump-sum transfers as a stable feedback with  $\theta > 0$  (log-linearised):

$$\hat{b}_{LGt}^{N} = \hat{b}_{SGt}^{N}$$
$$\frac{\delta}{\bar{b}_{LP}^{N}} \hat{\tau}_{t}^{N} = -\theta \left[ \hat{R}_{S,t-1} - \hat{\pi}_{c,t}^{N} + \hat{b}_{SG,t-1}^{N} \right]$$

Short-term debt is the clearing residual in the government budget constraint.

41 / 33

Motivation Model Results Conclusion October Oc

The central bank controls the short-term interest rate  $R_S$  via a Taylor-like rule which responds to the union-wide aggregates

$$\hat{R}_{\mathcal{S},t} = \rho_{\mathcal{R}}\hat{R}_{\mathcal{S},t-1} + (1-\rho_{\mathcal{R}})(\phi_{\pi}\hat{\pi}_t + \phi_{\mathcal{Y}}\hat{y}_t) + \varepsilon_{\mathcal{R},t}$$

with  $\alpha$  being the size of *North* and  $1 - \alpha$  the size of *South*:

$$\hat{\pi}_{c,t} = \alpha \hat{\pi}_{c,t}^N + (1-\alpha) \hat{\pi}_{c,t}^S$$
$$\hat{y}_t = \alpha \hat{y}_t^N + (1-\alpha) \hat{y}_t^S$$

Standard monetary policy is symmetric, yet unconventional bond purchases can potentially be asymmetric with some functional form:

$$\tilde{q}_t^N = f^N(.) + \varepsilon_{q,t}^N$$

• Seigniorage and income/losses from bond purchases can be distributed according to country size or back to the country of origin.

Central bank balance sheet with  $M_t = \alpha M_t^N + (1 - \alpha) M_t^S$ :

$$M_{t} = \alpha \left( B_{SC,t}^{N} + Q_{t}^{N} \right) + (1 - \alpha) \left( B_{SC,t}^{S} + Q_{t}^{S} \right)$$

Aggregate seigniorage in N is then determined by:

$$\begin{split} \alpha S_t^N &= (1 - (1 - \alpha)\mu_1) \left( R_{S,t-1} - 1 \right) \alpha B_{SC,t-1}^N + \alpha \mu_1 (R_{S,t-1} - 1) (1 - \alpha) B_{SC,t-1}^S \\ &+ (1 - (1 - \alpha)\mu_2) \left( R_{L,t}^N - 1 \right) \alpha Q_{t-1}^N + \alpha \mu_2 (R_{L,t}^S - 1) (1 - \alpha) Q_{t-1}^S \end{split}$$

µ<sub>1</sub> ∈ [0, 1] degree of income/loss sharing from regular seigniorage
µ<sub>2</sub> ∈ [0, 1] degree of income/loss sharing from QE bond purchases

Market clearing on the bond markets implies in each country:

- Short-term bonds:  $B_{SG,t}^N = B_{SD,t}^N + \frac{1-\alpha}{\alpha}B_{SF,t}^S + B_{SC,t}^N$
- Long-term bonds:  $B_{LG,t}^N = B_{LD,t}^N + \frac{1-\alpha}{\alpha} B_{LF,t}^S + Q_t^N$

Motivation Model Results Conclusion Background cocococcoco co Conclusion Conclusion Background Cocococcoco co Conclusion Conclusion Conclusion Conclusion Conception Conceptio

# BACKGROUND: Current account

**Current account**  $P_{p,t}^N \Omega_t^N = P_{c,t}^N c_t^N - P_{p,t}^N [y_t^N - \Xi_t^N]$  funded via five channels:

$$\begin{split} \mathcal{D}_{p,t}^{N} \Omega_{t}^{N} = & \frac{1-\alpha}{\alpha} \left[ M_{t}^{S} - M_{t-1}^{S} - (B_{SC,t}^{S} - B_{SC,t-1}^{S}) - (Q_{t}^{S} - Q_{t-1}^{S}) \right] \\ &+ \mu_{1}(1-\alpha)(R_{S,t-1}-1) \left[ B_{SC,t-1}^{S} - B_{SC,t-1}^{N} \right] \\ &+ \mu_{2}(1-\alpha) \left[ (R_{L,t}^{S}-1)Q_{t-1}^{S} - (R_{L,t}^{N}-1)Q_{t-1}^{N} \right] \\ &+ \frac{1-\alpha}{\alpha} \left[ B_{SF,t}^{S} - R_{S,t-1}B_{SF,t-1}^{S} \right] - \left[ B_{SF,t}^{N} - R_{S,t-1}B_{SF,t-1}^{N} \right] \\ &+ \frac{1-\alpha}{\alpha} \left[ B_{LF,t}^{S} - R_{L,t}^{N}B_{LF,t-1}^{S} \right] - \left[ B_{LF,t}^{N} - R_{L,t}^{S}B_{LF,t-1}^{N} \right] \end{split}$$

new money holdings in S exceed new money creation in S

If CB income shared across union:

ŀ

- a) more regular seigniorage generated in S than in N
- b) more QE income generated in S than in N
- If financial markets integrated:
  - a) Banks in S buy more new short-term debt issued in N than vice versa
  - b) Banks in S buy more new long-term debt issued in N than vice versa

| Motivation | Model | Results | Conclusion | Background |
|------------|-------|---------|------------|------------|
|            |       |         |            | 0000000000 |
|            |       |         |            |            |

# BACKGROUND: Calibration

| Parameter      | Value  | Description                                       |  |  |
|----------------|--------|---------------------------------------------------|--|--|
| α              | 0.5    | Relative country size of North                    |  |  |
| $\lambda_N$    | 0.8    | Home bias of consumption in North                 |  |  |
| $\omega_N$     | 0.7    | Home bias of bonds in North                       |  |  |
| η              | 1.0    | Substitutability of domestic and foreign goods    |  |  |
| β              | 0.9925 | Household discount factor                         |  |  |
| $\sigma$       | 6.0    | Elasticity of inter-temporal substitution         |  |  |
| ς              | 0.7    | Habit formation parameter in consumption          |  |  |
| ψ              | 2.0    | Frisch elasticity of labour supply                |  |  |
| $\sigma_m$     | 1.0    | Interest elasticity of money demand               |  |  |
| ε              | 5.0    | Elasticity of substitution across goods           |  |  |
| χ              | 28.65  | Price adjustment cost parameter                   |  |  |
| $\nu_1$        | 0.0038 | Short-long portfolio balance cost parameter       |  |  |
| $\nu_2$        | 0.0127 | Domestic-foreign portfolio balance cost parameter |  |  |
| θ              | 0.5    | Adjustment parameter in the fiscal transfer rule  |  |  |
| $\mu_1$        | 1.0    | Degree of income sharing from seigniorage         |  |  |
| μ2             | 0.0    | Degree of income sharing from bond purchases      |  |  |
| $\phi_{\pi}$   | 1.5    | Inflation coefficient in the interest rate rule   |  |  |
| $\phi_{v}$     | 0.5    | Output coefficient in the interest rate rule      |  |  |
| $\rho_R$       | 0.5    | Smoothing parameter in the interest rate rule     |  |  |
| ρn             | 0.85   | Smoothing parameter for the natural rate          |  |  |
| Ť              | 1.0    | Steady state of the terms of trade                |  |  |
| m <sub>b</sub> | 0.2    | Steady state ratio of money to short-term bonds   |  |  |
| БŇ             | 0.6    | Steady state ratio of long-term bonds to output   |  |  |
| δ              | 3.0    | Steady state ratio of long- to short-term bonds   |  |  |