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1 Introduction

This Economic Methods course

• covers

– Static utility maximisation

– Cost minimisation

– Profit maximisation

∗ Profit maximisation and factor demands

∗ Profit maximisation under monopoly

– Envelope theorem

– Intertemporal maximisation

– Basic probability theory

– Ordinary least squares

• lasts 7 weeks and ends before Christmas break

• has no examination at the end
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• is intended for

– students who have not done economic theory before (or a long time ago)

– students who need a little more help connecting abstract maths concepts to economic
problems

• builds on

– Maths Review (by the Chair of Public and Behavioural Economics): covers basic
linear algebra, real analysis, and some probability theory

– MIEPP courses (compulsory and elective): pose economic problems to be solved

⇒ this course helps connect the two
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Therefore we begin after everyone else ...

Table 1: MIEPP Timetable Winter Semester 2022/2023

Week # Dates Courses

1 before 24/10 “Maths Review” (to be confirmed by LS Schunk)

2 24/10 to 28/10 “Core Modules” lectures start

3 31/10 to 04/11 “Economic Methods” starts

... ... ...

8 12/12 to 16/12 “Economic Methods” ends

... ... ...
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The course format will be structured as follows...

• Classes twice a week: 1 lecture + 1 tutorial (see Macroeconomics Chair website for details)

• Lecture (90 mins):

(i) We look at a typical economic problem (e.g. utility maximisation).

(ii) A solution method is introduced for this class of problems (e.g. Lagrangian).

(iii) We discuss and explain an example from one of the other lectures (e.g. PPE).

• Tutorial (90 mins):

(i) You (the students) solve problems on the board in class.

(ii) At the end, we check your steps/results together.

⇒ Course material available online on the Macroeconomics Chair website before classes start.

1.3
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Table 2: Mapping of topics with MIEPP courses

Part Topic Professor (course) Semester Section

I Static maximisation Schunk (Principles Pub Econ) Winter 3

II Cost minimisation Harms (International Trade) Winter 4

III Profit max.: - factor demand Barbaro (Dev’t + Growth) Winter 5
- monopoly power Schunk (Principles Pub Econ) Winter 6

IV Envelope theorem Harms (International Trade) Winter 7

V Intertemp. max.: - discrete time Sauré (Fin Econonomics I ) Summer 8
- continuous time Wälde (Advanced Macro) Winter 9

VI Ordinary least squares van Ewijk (Intro Econometrics) Winter 10

VII Probability: - distribution Schank (Stats Methods) Summer 11
- mean and variance Schank (Stats Methods) Summer 12

1.4



2 Preliminaries: formulating a problem in economics

Simplest possible definition:

Economic theory studies the optimal behaviour of agents.

How do we do this? We define

• an objective function (or payoff in game theory), i.e. the goal the agent is trying to
achieve,

• a set of possible choices,

• and a trade-off, i.e. some cost to the choices made.

⇒ no trade-off = no problem!

Next, we apply mathematical tools to ...

• ... find the best possible choice given the objective and the trade-off faced by the agent.
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Why use maths?

• Forces us to have clear definitions.

• Helps to have clear relationships between various elements of the model.

• Helps to apply logic to find the “true” best possible solution to a problem.

⇒ 1 economic model tackles 1 problem, simplified to its bare minimum.

Empirical economics uses statistics (a sub-branch of mathematics) to

• find out if a model accurately represents reality (i.e. data),

• and test predictions of models.

• (also to test relationships between variables without model ⇝ bad research)

⇒ holds economic theory accountable, while economic theory gives problems for empirical
economics to investigate, i.e. they complement each other.

2.1



Part I

Static Utility Maximisation

3 Typical static maximisation problem

3.1 Setup

Consider the following consumption allocation problem,

max
{ci}Ni=1

u (c1, ..., cN) ,

subject to

W =
N∑

i=1

pici = p1c1 + p2c2 + ...+ pNcN .

• An individual makes choices over many consumption goods ({ci}Ni=1 := c1, ..., cN) given
a budget set (W > 0) to maximise utility at a given point in time (micro perspective ⇝
static). Each good i costs pi.

• The problem can be solved using the Lagrangian method
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• Lagrangian method consists in (i) setting up the Lagrangian function and (ii) taking the
first-order conditions (FOCs) to determine the optimal solution.

(i) First we set up the Lagrangian function,

L (c1, ..., cN ;λ) = u (c1, ..., cN) + λ

[
W −

N∑

i=1

pici

]
,

(ii) next we take the FOCs,

∂L
∂ci

=
∂u (c1, ..., cN)

∂ci
− λpi = 0, ∀i.

• From this, we can also compute the marginal rate of substitution (MRS) between two
goods i, j ∈ [1, N ] defined as

MRSij =
∂u (c1, ..., cN) /∂ci
∂u (c1, ..., cN) /∂cj

.

⇒ Useful for computing slope of indifference curves (= −MRS)
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3.2 Example: Optimal goods allocation (Prof. Schunk: PPE)
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3.3 Exercises

In a world with two goods, 1 and 2, and two individuals A and B, what is the rule governing
the optimal allocation of goods between A and B (i.e. the MRSAB)? Use the same setup as
in Example 3.2.

1. Use the following functional form: u (x1, x2) = xα
1x

1−α
2 , with 0 < α < 1.

2. Use the following functional form: u (x1, x2) = lnx1 + lnx2.

3. Use the following functional form: u (x1, x2) =
x1−σ
1 −1

1−σ
+

x1−σ
2 −1

1−σ
, with σ > 0 and σ ̸= 1.

4. Use the following functional form: u (x1, x2) =
∑2

i=1 x
θ
i , with θ > 0.
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Part II

Cost Minimisation

4 Typical minimisation problem

4.1 Setup

Consider the following problem where costs of production are a function of inputs (vi) and
prices (wi) for each factor of production i

min
{vi}Ni=1

c (v1, ..., vN) =
N∑

i=1

viwi = v1w1 + v2w2 + ...+ vNwN

The firm uses factor inputs {vi}Ni=1 := v1, ..., vN to produce a given level of output y > 0 using
a technology f (·), where ∂f (·) /∂vi > 0 and ∂2f (·) /∂v2i < 0, i.e. production increases in the
factors of production at a decreasing rate,

y = f (v1, ..., vN) .

• For a given output level y, a firm chooses a combination of factor inputs {vi}Ni=1 to
minimise the costs at given factor prices {wi}Ni=1.
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• Solving this problem yields conditional factor demands

• Once more, we can use the Lagrangian method,

L (v1, ..., vN ;λ) =
N∑

i=1

viwi

︸ ︷︷ ︸
=c(v1,...,vN )

+λ [y − f (v1, ..., vN)] ,

and once again obtain the FOCs

∂L
∂vi

= wi − λ
∂f (v1, ..., vN)

∂vi
= 0, ∀i

such that looking at two separate factors of production i and j, where i ̸= j, we would
have conditional factor demands fixed by their respective price

wi = λ
∂f (v1, ..., vN)

∂vi
,

wj = λ
∂f (v1, ..., vN)

∂vj
,

and dividing one by the other yields the optimality condition for the relative demand for
both factors of production as the ratio of their respective price being equal to the ratio
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of their marginal effect on the production function

wi

wj

=
∂f (v1, ..., vN) /∂vi
∂f (v1, ..., vN) /∂vj

.

• Where are the N equations and N unknowns?
Note that we only have N-1 First Order Conditions

• We have N+1 unknowns (v1-vN and λ), N First-Order Conditions and one constraint,
therefore N+1 equations.
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4.2 Example: firm cost minimisation (Prof. Harms: Int’l Trade)
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• Minimization of ci moves iso-cost line inwards
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The problem above gives us the following Lagrangian function

L (Ki, Li;λ) = rKi + wLi + λ [yi − fi (Ki, Li)] ,

with FOCs

∂L
∂Ki

= r − λ
∂fi (Ki, Li)

∂Ki

= 0 ⇔ r = λ
∂fi (Ki, Li)

∂Ki

,

∂L
∂Li

= w − λ
∂fi (Ki, Li)

∂Li

= 0 ⇔ w = λ
∂fi (Ki, Li)

∂Li

.

Dividing the second FOC by the first one we obtain the optimality condition from the slides
above

w

r
=

∂fi (Ki, Li) /∂Li

∂fi (Ki, Li) /∂Ki

.

• Where are the N equations and N unknowns?

• N=2:
2 unknowns: capital and labour
2 equations: FOC and constraint
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4.3 Exercises

Consider a firm i producing output yi ≥ 0 using technology fi (Ki, Li) ≥ 0 using two factors of
production, Ki ≥ 0 and Li ≥ 0. What is the optimality condition governing factors demand?
Use the same setup as in Example 4.2.

1. Use the following functional form: fi (Ki, Li) = Kα
i L

1−α
i , with 0 < α < 1.

2. Use the following functional form: fi (Ki, Li) = [αKϵ
i + (1− α)Lϵ

i ]
1
ϵ , with 0 < α < 1 and

ϵ < 1.
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Part III

Profit Maximisation

5 Profit maximisation and factor demands

5.1 Setup

Consider the following problem where a firm tries to maximise profits π

max
{vi}Ni=1

π = y − c (v1, ..., vN)

subject to
y = f (v1, ..., vN)

and as before costs are given by

c (v1, ..., vN) =
N∑

i=1

wivi.

• Given factor prices {wi}Ni=1, a firm chooses a combination of factor inputs {vi}Ni=1 to
maximise its profits.
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• Solving this problem yields unconditional factor demands

• We can solve this problem by the Lagrangian method once more,

L (v1, ..., vN ;λ, µ) = y − c (v1, ..., vN) + λ [f (v1, ..., vN)− y] + µ

[
c (v1, ..., vN)−

N∑

i=1

wivi

]

... but this becomes a little complicated.

• Instead, we can employ a simpler method, known as the substitution method, where (i)
we replace terms by their definitions and (ii) solve directly for optimal factor allocation:

max
{vi}Ni=1

π = y − c (v1, ..., vN) ⇔ max
{vi}Ni=1

π = f (v1, ..., vN)−
N∑

i=1

wivi,

giving us the FOCs,

∂π

∂vi
=

∂f (v1, ..., vN)

∂vi
− wi = 0 ⇔ wi =

∂f (v1, ..., vN)

∂vi
, ∀i,

such that each factor of production is demanded up until its marginal benefit to production
equals its price (i.e. its marginal cost).
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5.2 Example: Capital demand (Prof. Barbaro: Devp’t + Growth)
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This model starts from a representative firm producing aggregate output Y using aggregate
capital K and labour L with a Cobb-Douglas production function with parameter 0 < α < 1
and total factor productivity (TFP) A

Y = AKαL1−α.

representative firm maximises profits, which are given by

π = Y − rK − wL.

Maximising profits by choosing capital optimally, using the substitution method, we obtain

∂

∂K
π =

∂

∂K

(
AKαL1−α − rK − wL

)
= 0

⇔ K =

(
αA

r

) 1
1−α

L.

Note that we can rewrite K/L as k, which is interpreted as capital per worker. If r is fixed
because the country is small in comparison to the world (so is a price taker for capital, which
is mobile, and r = rw), we can rewrite the condition above

k∗ =

(
αA

rw

) 1
1−α

.
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5.3 Exercises

Consider a country producing aggregate output Y ≥ 0 using technology F (K,L) ≥ 0 using
aggregate capital, K ≥ 0 and aggregate labour L ≥ 0. What will capital per worker (k) be
equal to? Use the same setup as in Example 5.2.

1. Use the following functional form: Y = Kα (AL)1−α, with 0 < α < 1.

2. Use the following functional form: Y =
[
αKθ + (1− α) (AL)θ

] 1
θ
, with 0 < α < 1 and

θ < 1.
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6 Profit maximisation under monopoly

6.1 Setup

Consider the following profit maximisation problem for some firm with monopoly power, where
we now consider that the price in this market will depend on the output of the firm (was not
the case before with perfect competition, because each firm was too small to affect the price →
not the case with monopoly)

max
y

π = p (y) y − c (w1, ...wN , y)

• For a given cost function c (w1, ...wN , y), the monopolistic firm chooses output y in order
to maximise profits, thus setting optimal output production.

• Solving this problem yields the optimal monopolistic price as the reciprocal of the optimal
output: y (p) ⇔ p := y−1 (p). In other words: choosing output fixes the price in the
market, because the firm has “monopoly power”.
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• To solve this problem, we can immediately take the derivative w.r.t. output y and solve
for the optimal level...

∂π

∂y
= p′ (y) y + p (y)− cy (w1, ...wN , y) = 0

⇔ cy (w1, ...wN , y) = p′ (y) y + p (y)

cy (w1, ...wN , y) = p (y)

[
dp (y)

dy

y

p (y)︸ ︷︷ ︸
= elasticity of
price in output

+1

]

• Rent creation is one possible application of monopoly power, whereby a firm creates a
monopoly in order to extract ”rent” from consumers.

⇒ We can assume that cy(w1, ...wN , y) has the functional form c(w1, ...wN)y (see exercises
chapter 7). Then solve for y
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6.2 Example: A Monopolist (Prof. Schunk: PPE)
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• The maximization problem

Behind this figure, there is a simple model of profit maximization. It reads

max
y

π = p (y) y − cy = revenue-cost. (6.1)

The dependence of the price p on output y of the monopolist is captured by the function p (y) .
This function can be thought of as reflecting a goods demand function by utility-maximizing
households. The costs of producing output y are given by cy. Marginal costs are therefore c.
Such a cost function results e.g. from a linear production function y = Al where A is labour
productivity and l is labour input. Given a wage w, marginal costs c would be w/A.

• Average and marginal revenue

Average revenue is p(y)y
y

= p (y) is the demand curve. In the figure, is is visible as a straight

line, i.e. it takes the form p (y) = a − by where a and b are constants. Note that such a
(inverse) demand curve rarely comes out of standard utility functions (but try the quadratic
utility function). Marginal revenue is

MR ≡ d (p (y) y)

dy
=

dp (y)

dy
y + p (y)
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With the linear functional form p (y) = a− by from above, this reads

MR = −by + a− by = a− 2by.

It is also a line and falls more steeply than the average cost curve, as visible in the figure as
well.

• Optimality

Optimal output is described by the first-order condition

MR = MC,

where the latter is c with our profit function (6.1). This intersection point gives the optimal
quantity ym and optimal price pm. Optimal means here of course from the perspective of the
monopolist but not from the perspective of consumers or social welfare (i.e. society).

When we express optimality in terms of the condition (??) from above, we employ cy (w1, ...wN , y) =
c and can express it as

c = p (y)

[
dp (y)

dy

y

p (y)
+ 1

]
⇔ p =

c

1 + dp(y)
dy

y
p(y)

.

In this expression, 1

1+
dp(y)
dy

y
p(y)

is called the mark-up of the price p over marginal costs c. Note

that the mark-up is larger than one as the demand function falls in the price, i.e. dp(y)
dy

< 0 and
therefore the denominator is smaller than one.
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6.3 Exercises

Consider a monopolist from Example 6.2 and help them to maximize profits – even though
this might be considered as a morally questionable task. Let the (inverse) demand function be
given by p (y) = y−1/εΦ, where ε is price elasticity of demand and Φ is a constant (capturing,
inter alia, total expenditure, a price index and preference parameters).

1. Illustrate the link between the demand function as specified above, p (y) = y−1/εΦ, and
Dixit-Stiglitz or Cobb-Douglas demand functions known from other lectures in trade or
macro.

2. Solve the profit maximization problem using a cost function that is cubic, i.e. C (y) = 1
3
y3.

What is the optimal level of output y∗? What are profits π∗ given by at this production
level?

3. Solve the problem for a firm under perfect competition.
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Part IV

Envelope Theorem

7 Definition and application

7.1 Preliminaries

Theorem Let f (x1, ..., xN ; a) be a continuous function of (x1, ..., xN) ∈ RN and the scalar
a. For each choice of parameter a, consider the unconstrained maximisation problem

max
{xi}Ni=1

f (x1, ..., xN ; a) .

Let x∗
1 (a) , ..., x

∗
N (a) be solutions to this problem. Suppose that x∗

1 (a) , ..., x
∗
N (a) are continuous

functions of a. Then,

d

da
f(x∗

1 (a) , ..., x
∗
N (a) ; a) =

∂

∂a
f(x∗

1 (a) , ..., x
∗
N (a) ; a).

In other words, ∂f(·)
∂x∗

i (a)
= 0 and we only need to look at the partial derivative of f (·) w.r.t. a as

a direct argument.
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Intuition:

d

da
f(x∗

1 (a) , ..., x
∗
N (a) ; a) =

∂f(x∗
1 (a) , ..., x

∗
N (a) ; a)

∂x∗
1 (a)︸ ︷︷ ︸
=0

∂x∗
1 (a)

∂a
+ ...+

∂f(x∗
1 (a) , ..., x

∗
N (a) ; a)

∂a

=
∂f(x∗

1 (a) , ..., x
∗
N (a) ; a)

∂a

x∗
i (a) are solutions to the problem → increasing a has no effect on the overall function because

each x∗
i (a) → is already the optimal choice for f (·), thus only direct partial effect of a matters

• For graphical illustration check chapter 4.2 of the book ” Applied intertemporal optimiza-
tion” by Klaus Wälde (2012)
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7.2 Example: Shephard’s Lemma (Prof. Harms: Int’l Trade)
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7.3 Exercises

Using the solution to the cost minimisation of Section 4, i.e. w
r
= ∂f(K∗,L∗)/∂L

∂f(K∗,L∗)/∂K
, and the definition

of the cost function c = rK∗+wL∗ (where K∗ and L∗ are the conditional factor demands), use
the following functional forms to rewrite the cost function as c = ϕ (w, r) y, where ϕ (·) is some
function of factor prices.

1. Using a Cobb-Douglas function, y = f (K,L) = KαL1−α, where 0 < α < 1.

2. Show that marginal costs ∂c/∂y equals average costs c/y for the Cobb-Douglas case.

3. Using a CES function, y = f (K,L) =
[
αKθ + (1− α)Lθ

] 1
θ , where 0 < α < 1 and θ < 1.

4. Show that marginal costs ∂c/∂y equals average costs c/y for the CES case.
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Part V

Intertemporal Maximisation Problem

8 Discrete time model

8.1 Setup

Consider a typical macroeconomic model within this framework, the Social Planner Prob-
lem:

max
{Ct}∞t=0

U0 =
∞∑

t=0

βtu (Ct)

for 0 < β < 1, subject to

Kt+1 = (1 + r)Kt − δKt + Yt − Ct = (1 + r − δ)Kt + Yt − Ct.

The capital stock increase with a return rate r > 0 on its previous level, minus depreciation at
rate 0 < δ < 1, as well as with production Yt, but decreases with consumption Ct. What is not
consumed, Yt − Ct, gets re-invested into capital.
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• This problem can be solved using the Lagrangian method,

L (Ct, Kt+1;λt) =
∞∑

t=0

βt {u (Ct) + λt [(1 + r − δ)Kt + Yt − Ct −Kt+1]}

Taking the FOCs w.r.t. Ct and Kt+1 yields

∂L
∂Ct

= βt {u′ (Ct) + λt [−1]} = 0

⇔ u′ (Ct) = λt,

∂L
∂Kt+1

= βt {λt [−1]}+ βt+1 {λt+1 (1 + r − δ)} = 0

⇔ λt = βλt+1 (1 + r − δ) .

Combining both FOCs together yields the Euler equation

u′ (Ct) = β (1 + r − δ)u′(Ct+1).
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8.2 Example: Sovereign default (Prof. Sauré: Fin. Economics I)
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8.3 Exercises

1. What is the optimal consumption rule for the Sovereign default model when utility is

CRRA, i.e. u (Ct) =
c1−σ
t −1

1−σ
? With σ ≥ 0 and σ ̸= 1.

2. Derive the optimal consumption rule for an individual. The objective function is given
by the utility function of an individual,

Ut = Σ∞
τ=tβ

τ−tu (cτ ) , (8.1)

where
β ≡ (1 + ρ)−1 , ρ > 0 (8.2)

The budget constraint can be expressed in the intertemporal version by

Σ∞
τ=t (1 + r)−(τ−t) eτ = at + Σ∞

τ=t (1 + r)−(τ−t)wτ , (8.3)

where eτ = pτcτ .

3. What is the optimal consumption rule for the Sovereign default model when utility is
exponential, i.e. u (Ct) =

eαct

α
? With α > 0. [additional exercise, beyond standard course

content]
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9 Continuous time problem

9.1 Setup

Continuous time problem

max
{c(τ)}∞τ=t

U (t) =

∫ ∞

t

e−ρ[τ−t]u (c (τ))dτ

subject to
ȧ (τ) = r (τ) a (τ) + w (τ)− c (τ)

• This problem can be solved using the Hamiltonian approach

• This approach is related to the Lagrangian, but is specific to continuous time models.

• The steps are similar: set up your objective function, take first-order conditions, and
solve for the optimal rule.
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Setting up the Hamiltonian here gives us

H (c (τ) , a (τ) ;λ (τ)) = u (c (τ)) + λ (τ) [r (τ) a (τ) + w (τ)− c (τ)] .

• Thus, we maximise the instantaneous function of the control variable in blue with respect
to the equation describing the evolution of the state variable in red.

• λ (τ) is the shadow price as before.

• The FOCs are now given by:

∂H
∂c

= 0 ⇔ u′ (c (τ)) = λ (τ)

∂H
∂a

= ρλ (τ)− λ̇ (τ) ⇔ λ̇ (τ) = (ρ− r (τ))λ (τ)

• The first FOC looks at the optimal choice of the control variable such that the Hamiltonian
does not change any more.

• The second FOC looks at the optimal change of the state variable w.r.t. the Hamiltonian
such that it equates the difference between the flow value of the shadow price (ρλ) and
the change of the shadow price over time (λ̇)

• Next, we take the derivative of the first FOC w.r.t. time, and then plug in the result and
the first FOC itself into the second FOC, and rearrange.
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9.2 Example: the central planner (Prof. Wälde: Advanced Macro)
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9.3 The Shell Model

• The idea:
An economy needs resources for innovation and growth
Technological progress does not come costlessly (as in Solow growth model)

• A planner setup

Social welfare function reads

U (t) =

∫ ∞

t

e−ρ[τ−t]u (C (τ)) dτ

where utility from aggregate consumption is given by

u (C (τ)) =
C (τ)1−σ − 1

1− σ
, σ > 0

C (τ) = A (τ) [L− LA (τ)]

Ȧ (τ)

A (τ)
= LA (τ) (9.1)

where A (τ) is labour productivity in τ ≥ t and labour L is the only (fixed) factor of
production. The number of workers in the research sector is given by LA (τ).
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We now have two versions of the maximization problems, using constraint 1 and using
constraint 2. We solve the problem here using constraint 1, i.e. using consumption as a
control variable.

Constraint 1:

C (τ) = A (τ) [L− LA (τ)] ⇔ C (τ)

A (τ)
= L− LA (τ) ⇔ LA (τ) = L− C (τ)

A (τ)

we obtain as constraint

Ȧ (τ)

A (τ)
= L− C (τ)

A (τ)
⇔ Ȧ (τ) = A (τ)L− C (τ) .

What is the Keynes-Ramsey rule?

Hamiltonian reads

H =
C (τ)1−σ − 1

1− σ
+ λ [A (τ)L− C (τ)] .

Two partial derivates of the Hamiltonian

∂H

∂C (τ)
= C (τ)−σ − λ = 0 ⇔ C (τ)−σ = λ (9.2)

∂H

∂A (τ)
= λL
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Second optimality condition requires

∂H

∂A (τ)
= ρλ− λ̇ ⇔ λ̇ = ρλ− ∂H

∂A (τ)
= ρλ− λL

⇔ λ̇ = ρλ− λL = (ρ− L)λ (9.3)

Replace λ in second optimality condition

λ̇ = (ρ− L)C (τ)−σ

Compute time derivative of lambda from first-order condition

λ̇ = −σC (τ)−σ−1 Ċ (τ)

and plug this into earlier equation

−σC (τ)−σ−1 Ċ (τ) = (ρ− L)C (τ)−σ

⇔ −σC (τ)−1 Ċ (τ) = (ρ− L) ⇔ Ċ (τ)

C (τ)
=

L− ρ

σ
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9.4 Exercises

1. What is the optimal consumption rule (or Keynes-Ramsey rule), when production is Cobb
Douglas, Y (K (t) , L) = K (t)α L1−α? With 0 < α < 1.

2. What is the optimal consumption rule (or Keynes-Ramsey rule), when production is CES,

Y (K (t) , L) =
[
αK (t)θ + (1− α)Lθ

] 1
θ
? With θ < 1.

3. What is the optimal consumption rule (or Keynes-Ramsey rule) in the Shell-Model, when
LA is the control variable?
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Part VI

Ordinary Least Squares

10 Typical OLS regression

10.1 Preliminaries: method of moments for 1 explanatory variable

Typical OLS regression equation explains a (linear) relationship between a dependent variable
y and an independent variable x (see “Intro Econometrics” by Prof. Dr. Van Ewijk + “Cross
Section and Panel Data” by Prof. Dr. Schank for multivariate case)

y = β0 + β1x+ u,

where β0 is the intercept, β1 is the coefficient of interest in the regression, and u is the residual.
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In turn, we estimate β0 and β1 by solving the following minimization problem, given a sample
size n

minβ0,β1

1

N

N∑

i=1

(
yi − β̂0 − β̂1x1

)2

which yields the following FOC’s

1

n

n∑

i=1

(yi − β̂0 − β̂1xi) = 0, (Condition 1)

1

n

n∑

i=1

xi(yi − β̂0 − β̂1xi) = 0. (Condition 2)

We can rewrite the first expression as

ȳ = β̂0 + β̂1x̄ ⇔ β̂0 = ȳ − β̂1x̄,

where ȳ and x̄ are the sample averages of y and x. Thus, if we know β̂1, we can compute the
estimate of the intercept (the sample averages being trivial to obtain).

To obtain this estimate of the slope, we go back to the second expression above, and replace
β̂0 with our expression in terms of sample averages,

n∑

i=1

xi(yi − [ȳ − β̂1x̄]− β̂1xi) = 0,
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where we drop 1
n
, since the other side is equal to 0, and thus it does not affect the solution. We

can then rewrite this in terms of deviations from the sample averages (i.e. deviations from the
mean),

n∑

i=1

xi[yi − ȳ] = β̂1

n∑

i=1

xi[xi − x̄].

Using properties of sums we can rewrite this as (see Wooldrige (2000) for details)

n∑

i=1

[xi − x̄][yi − ȳ] = β̂1

n∑

i=1

[xi − x̄]2 ⇔ β̂1 =

∑n
i=1[xi − x̄][yi − ȳ]∑n

i=1[xi − x̄]2
.

This last equality tells us that the estimate β̂1 is given by the covariance of x and y divided by
the variance of x.
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10.2 Example: Multiple Regression (Prof. van Ewijk: Intro Econo-
metrics)
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10.3 Exercises

Given the following samples, compute the estimates of the intercept β̂0 and of the slope β̂1.

1. The following table gives the number of units produced for a clone army y (in thousands)
and the number of hours spent per day producing clones x over a 10-day period on
Kamino.

y 5 8 15 12 5 8 2 10 12 17
x 1.5 2 2.5 2.5 2 2 1 1.5 2 2.5

Given your estimates, how many clones would be produced if the Kaminoans spent 4h/day
producing them?

2. The following are final grades in an exam y and average number of hours spent studying
per week x for 12 students.

y 51 45 44 43 40 35 33 24 23 21 16 2
x 10 12 10 6 9 9 9 7 5 6 4 2

Given your estimates, what grade would a student achieve if they spent 11h/week studying
toward their exam?
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Part VII

Probability Theory

11 Distribution

11.1 Discrete random variable

We begin by defining the probability that a random variable X take on a specific value x as

fX (xi) := Prob (X = xi) = pi,

where we call fX (xi) the probability mass function (PMF) of X. Correspondingly, we can
define the cumulative probability that X take on any value less than or equal to xi as

FX (xi) := Prob (X ≤ xi) =
∑

xi≤x

fX (xi) ,

also called the cumulative distribution function (CDF).
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11.2 Continuous random variable

Consider a continuous random variable X that can take any value in the interval S = [a, b].
The probability that X be smaller than or equal to some x ∈ S is given by

FX (x) := Prob (X ≤ x) ,

which is its CDF. Correspondingly, we can compute the probability density function (PDF) of
X as

fX (x) =
dFX (x)

dx
.

Thus, the probability that X takes on a value between points c and d such that a < c < d < b
is given by

Prob(c < X < d) = FX(d)− FX(c) =

∫ d

c

fX (x) dx.

Notation is often abbreviated to f (x) := fX (x), when there is no ambiguity about the domain
of the variable.
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11.3 Example: Distribution of discrete and continuous RV (Prof.
Schank: Stats Methods)
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11.4 Exercises

1. Using a fair 20-sided die, what is the probability that you will roll a 17? What is the
probability that you will roll a 15 or higher?

2. Given a uniformly distributed variable X on the interval [a, b] with CDF, F (x) = x−a
b−a

,
compute the PDF of this function. Additionally, what is the probability that x = c,
where c = b−a

3
? What is the probability that X is greater than c?
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12 Mean and variance

12.1 Discrete random variable

Consider a discrete random variable X that can take any value x1, x2, ..., xN with corresponding
probabilities p1,p2, ..., pN . The expected value of the random variable X is

E (X) ≡ µX =
N∑

i=1

pixi

When the number of realizations is infinitely large, we need to add up to ∞, so N is replaced
by ∞.
The variance is defined as

Var (X) ≡ σ2
X =

N∑

i=1

pi (xi − µX)
2

Where (xi − µX)
2 is the centered second moment.Note that if we were to define a new random

variable Z with realizations zi = (xi − µX)
2, then we would have V ar(X) = E(Z).

The standard deviation is the square root of the variance

σX =

√√√√
N∑

i=1

pi (xi − µX)
2
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12.2 Continuous random variable

Given Section 11, we consider a continuous random variable with density f(x) on the support
[a, b]

• the expected value of X as

E (X) ≡
∫ b

a

xf (x) dx,

• and the variance of X as

Var (X) ≡
∫ b

a

(x− E (x))2 f (x) dx.

Of course, the standard deviation is also given by the square root of the variance,

σX =
√
Var (X).
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12.3 Example: Mean and variance of discrete and continuous RV
(Prof. Schank: Stats Methods)

Principles of Econometrics Basics in Probability Chapter 2.2 - Slide 39/234

Important features of distributions

! Expected value (mean): measure of central tendency

µX = E(X) =
k∑

j=1

xj · fX (xj) if discrete

=

∫ ∞

−∞
x · fX (x) dx if continuous

! Variance: measure of variability

σ2
X = Var(X) =E

(
(X − µX)2

)

=E
(
X2
)

− µ2
X
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12.4 Exercises

1. Let X ∼ log(k) (i.e. logarithmically distributed), compute the expected value of the
discrete r.v. X (Note: the pmf of the log-distribution is pi (xi) = −1

ln(1−k)
kxi
xi
, where

xi ∈ {1, 2, 3, ...} is the support of the distribution and 0 < k < 1 is a parameter).

2. Let Y ∼ N (0, 1) (i.e. standard normally distributed), compute the expected value of
the continuous r.v. y. (Note: the pdf of the standard normal distribution is given by:
f (y) = 1√

2π
e−(y2)/2, and Y is defined on the entire real line).

3. Let Z ∼ uniform(0, 2) (i.e. uniformly distributed), compute the expected value AND the
variance of the continuous r.v. Z. (Note: the pdf of this uniform distribution is given by:
f(z) = 1

2
, and Z is defined on the set of real numbers from 0 to 2).
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